Find the derivative of the function. y = -5e- - 4x2 dy dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
4.4 3
**Objective:**

Find the derivative of the given function.

**Problem Statement:**

Given the function:

\[ y = -5e^{-4x^2} \]

**Task:**

Determine \(\frac{dy}{dx}\).

**Solution Explanation:**

To find the derivative of the function, apply the chain rule. The function is an exponential function of the form \( y = -5e^{u} \) where \( u = -4x^2 \).

**Steps:**

1. Differentiate \( e^u \) with respect to \( u \): \(\frac{d}{du}e^u = e^u\).
2. Differentiate \( u = -4x^2 \) with respect to \( x \):

   \[ \frac{du}{dx} = \frac{d}{dx}(-4x^2) = -8x \]

3. Apply the chain rule:

   \[ \frac{dy}{dx} = \frac{d}{du}(-5e^u) \cdot \frac{du}{dx} = -5e^u \cdot (-8x) \]

4. Substitute \( u = -4x^2 \):

   \[ \frac{dy}{dx} = -5e^{-4x^2} \cdot (-8x) \]
   \[ \frac{dy}{dx} = 40xe^{-4x^2} \]

Thus, the derivative \(\frac{dy}{dx}\) is:

\[ \frac{dy}{dx} = 40xe^{-4x^2} \]
Transcribed Image Text:**Objective:** Find the derivative of the given function. **Problem Statement:** Given the function: \[ y = -5e^{-4x^2} \] **Task:** Determine \(\frac{dy}{dx}\). **Solution Explanation:** To find the derivative of the function, apply the chain rule. The function is an exponential function of the form \( y = -5e^{u} \) where \( u = -4x^2 \). **Steps:** 1. Differentiate \( e^u \) with respect to \( u \): \(\frac{d}{du}e^u = e^u\). 2. Differentiate \( u = -4x^2 \) with respect to \( x \): \[ \frac{du}{dx} = \frac{d}{dx}(-4x^2) = -8x \] 3. Apply the chain rule: \[ \frac{dy}{dx} = \frac{d}{du}(-5e^u) \cdot \frac{du}{dx} = -5e^u \cdot (-8x) \] 4. Substitute \( u = -4x^2 \): \[ \frac{dy}{dx} = -5e^{-4x^2} \cdot (-8x) \] \[ \frac{dy}{dx} = 40xe^{-4x^2} \] Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = 40xe^{-4x^2} \]
Expert Solution
Step 1

Solve for the derivative

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning