Find the derivative of F(y). Select the correct answer. F( y) = sinh y tanh y F' (y) = sinh y sech y + tanh y cosh y F' ( y) = sinh y sech 2 y + tanh y cosh y F' (y) = sinh y sech 2 y + tanh y cosh ² y 2 F'(y) = sinh y sech ² y + tanh y 2

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Derivatives of Hyperbolic Functions

**Problem:**

Find the derivative of \( F(y) \).

\[ F(y) = \sinh y \tanh y \]

**Solution:**

Select the correct answer.

1. \( F'(y) = \sinh y \, \text{sech} \, y + \tanh y \, \cosh y \)
2. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, \cosh y \)
3. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, \cosh^2 \, y \)
4. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \)

### Explanation:

To solve this, we need to apply the product rule for differentiation and the chain rule, as well as leverage the hyperbolic function identities. Specifically, recall the derivatives:
- \( \frac{d}{dy} (\sinh y) = \cosh y \)
- \( \frac{d}{dy} (\tanh y) = \text{sech}^2 y \)

Using these, we can find \( F'(y) \) step by step.


### Detailed Solution

1. Start with the function \( F(y) = \sinh y \tanh y \).

2. Apply the product rule: 
   \[ F'(y) = (\sinh y)' \tanh y + \sinh y (\tanh y)' \]

3. Note the derivatives of the component functions:
   \[ (\sinh y)' = \cosh y \]
   \[ (\tanh y)' = \text{sech}^2 y \]

4. Substitute these into the product rule:
   \[ F'(y) = \cosh y \tanh y + \sinh y \text{sech}^2 y \]

Based on this calculation, the correct answer is:

\[ \boxed{ F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, }\]

Correct answer: \[ \sinh y \
Transcribed Image Text:### Derivatives of Hyperbolic Functions **Problem:** Find the derivative of \( F(y) \). \[ F(y) = \sinh y \tanh y \] **Solution:** Select the correct answer. 1. \( F'(y) = \sinh y \, \text{sech} \, y + \tanh y \, \cosh y \) 2. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, \cosh y \) 3. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, \cosh^2 \, y \) 4. \( F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \) ### Explanation: To solve this, we need to apply the product rule for differentiation and the chain rule, as well as leverage the hyperbolic function identities. Specifically, recall the derivatives: - \( \frac{d}{dy} (\sinh y) = \cosh y \) - \( \frac{d}{dy} (\tanh y) = \text{sech}^2 y \) Using these, we can find \( F'(y) \) step by step. ### Detailed Solution 1. Start with the function \( F(y) = \sinh y \tanh y \). 2. Apply the product rule: \[ F'(y) = (\sinh y)' \tanh y + \sinh y (\tanh y)' \] 3. Note the derivatives of the component functions: \[ (\sinh y)' = \cosh y \] \[ (\tanh y)' = \text{sech}^2 y \] 4. Substitute these into the product rule: \[ F'(y) = \cosh y \tanh y + \sinh y \text{sech}^2 y \] Based on this calculation, the correct answer is: \[ \boxed{ F'(y) = \sinh y \, \text{sech}^2 \, y + \tanh y \, }\] Correct answer: \[ \sinh y \
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning