Find the derivative of f (x) = ln O f'(x) © f'(x) O f'(x) O f'(x) = = = = | 8 + sin x f (x) = ln ( 22 +cot x ²/1 + tan x + +cot + 2 2x+1 2 2x+1 2 2x+1 2 2x+1 x² sin x 2x+1

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find the derivative of \( f(x) = \ln \left( \frac{x^2 \sin x}{2x+1} \right) \).

**Options:**

1. \( f'(x) = \frac{2}{x} + \sin x - \frac{2}{2x+1} \)
2. \( f'(x) = \frac{2}{x} + \cot x - \frac{2}{2x+1} \) (Correct answer)
3. \( f'(x) = \frac{2}{x} + \tan x + \frac{2}{2x+1} \)
4. \( f'(x) = \frac{1}{x} + \cot x + \frac{2}{2x+1} \)

**Explanation for the Correct Option:**

The derivative of a logarithmic function of the form \( \ln\left(\frac{u}{v}\right) \) can be found using the formula:

\[
f'(x) = \frac{u'}{u} - \frac{v'}{v}
\]

where \( u = x^2 \sin x \) and \( v = 2x + 1 \). 

- The derivative \( u' = \frac{d}{dx}(x^2 \sin x) \) can be solved using product rule.
- The derivative \( v' = \frac{d}{dx}(2x+1) \).

Substituting these into the formula will provide the correct derivative as shown in option 2.
Transcribed Image Text:**Problem Statement:** Find the derivative of \( f(x) = \ln \left( \frac{x^2 \sin x}{2x+1} \right) \). **Options:** 1. \( f'(x) = \frac{2}{x} + \sin x - \frac{2}{2x+1} \) 2. \( f'(x) = \frac{2}{x} + \cot x - \frac{2}{2x+1} \) (Correct answer) 3. \( f'(x) = \frac{2}{x} + \tan x + \frac{2}{2x+1} \) 4. \( f'(x) = \frac{1}{x} + \cot x + \frac{2}{2x+1} \) **Explanation for the Correct Option:** The derivative of a logarithmic function of the form \( \ln\left(\frac{u}{v}\right) \) can be found using the formula: \[ f'(x) = \frac{u'}{u} - \frac{v'}{v} \] where \( u = x^2 \sin x \) and \( v = 2x + 1 \). - The derivative \( u' = \frac{d}{dx}(x^2 \sin x) \) can be solved using product rule. - The derivative \( v' = \frac{d}{dx}(2x+1) \). Substituting these into the formula will provide the correct derivative as shown in option 2.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning