Find the curvature K of the curve. r(t) = 4 cos 2nti + 4 sin 2ntj K.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Curvature of a Parametric Curve**
**Problem Statement:**
Find the curvature \( K \) of the curve.
**Parametric Equation:**
\[
\mathbf{r}(t) = 4 \cos(2 \pi t) \, \mathbf{i} + 4 \sin(2 \pi t) \, \mathbf{j}
\]
**Objective:**
Calculate the curvature \( K \) of the given parametric curve.
**Curvature Formula:**
The formula for the curvature \( K \) of a plane curve given by \(\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j}\) is:
\[
K = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\left( (x'(t))^2 + (y'(t))^2 \right)^{3/2}}
\]
**Solution:**
To find the curvature, calculate the first and second derivatives of \( x(t) \) and \( y(t) \) from the parametric equation, substitute them into the curvature formula, and simplify to find \( K \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F482445b4-5947-40a3-b7da-6005a8b8ce0f%2F88c068ae-d55a-4abc-ac33-408a0333925b%2F5n55txr_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Curvature of a Parametric Curve**
**Problem Statement:**
Find the curvature \( K \) of the curve.
**Parametric Equation:**
\[
\mathbf{r}(t) = 4 \cos(2 \pi t) \, \mathbf{i} + 4 \sin(2 \pi t) \, \mathbf{j}
\]
**Objective:**
Calculate the curvature \( K \) of the given parametric curve.
**Curvature Formula:**
The formula for the curvature \( K \) of a plane curve given by \(\mathbf{r}(t) = x(t) \mathbf{i} + y(t) \mathbf{j}\) is:
\[
K = \frac{|x'(t)y''(t) - y'(t)x''(t)|}{\left( (x'(t))^2 + (y'(t))^2 \right)^{3/2}}
\]
**Solution:**
To find the curvature, calculate the first and second derivatives of \( x(t) \) and \( y(t) \) from the parametric equation, substitute them into the curvature formula, and simplify to find \( K \).
Expert Solution

Step 1
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

