Find the coefficients of the complex exponential FS for the function: 0] f(x) = {0ifz € (-2,01} x x π] =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find the coefficients of the complex exponential FS for the function:
[ 0 if x = [-T, 0]
x if x = (0, π]
f(x) =
Transcribed Image Text:Find the coefficients of the complex exponential FS for the function: [ 0 if x = [-T, 0] x if x = (0, π] f(x) =
Expert Solution
Step 1: Fourier series coefficients find out

Given function is f left parenthesis x right parenthesis equals open curly brackets table row 0 cell i f space x space element of open square brackets negative pi comma 0 close square brackets end cell row x cell i f space x element of left parenthesis 0 comma pi right square bracket space end cell end table close

Therefore the complex form of fouruer series is f left parenthesis x right parenthesis equals sum from n equals negative infinity to infinity of c subscript n e to the power of i n x end exponent

where fourier coefficients obtained from following :

f o r space n space not equal to 0 comma space c subscript n equals fraction numerator 1 over denominator 2 pi end fraction integral subscript negative pi end subscript superscript pi f open parentheses x close parentheses e to the power of negative i n x end exponent d x comma n space element of straight integer numbers set minus open curly brackets 0 close curly brackets space a n d space c subscript 0 equals fraction numerator 1 over denominator 2 pi end fraction integral subscript negative pi end subscript superscript pi f left parenthesis x right parenthesis d x

      equals fraction numerator 1 over denominator 2 pi end fraction open parentheses 0 plus integral subscript 0 superscript pi x e to the power of negative i n x end exponent d x close parentheses

  equals fraction numerator 1 over denominator 2 pi end fraction open parentheses open square brackets fraction numerator x e to the power of negative i n x end exponent over denominator negative i n end fraction close square brackets subscript 0 superscript pi minus 1 over open parentheses negative i n close parentheses squared space open square brackets e to the power of negative i n x end exponent close square brackets subscript 0 superscript pi close parentheses

steps

Step by step

Solved in 3 steps with 9 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,