Find the chromatic number of each of the graphs given below. (a) The path graph P15 X (P15) = (b) The cycle graph C12 X (C12) = (c) The cycle graph C13 X (C13) = (d) The complete bipartite graph K6,13 X (K6,13) = (e) The complete graph K15 X (K15)
Find the chromatic number of each of the graphs given below. (a) The path graph P15 X (P15) = (b) The cycle graph C12 X (C12) = (c) The cycle graph C13 X (C13) = (d) The complete bipartite graph K6,13 X (K6,13) = (e) The complete graph K15 X (K15)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Find the chromatic number of each of the graphs given below.
(a) The path graph P15
X (P15) =
(b) The cycle graph C12
X (C12) =
(c) The cycle graph C13
X
(C13) =
(d) The complete bipartite graph K6,13
X (K6,13) =
(e) The complete graph K15
X (K15)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F23af0884-495a-461c-9f7c-d263d97dbf10%2F79dd03c3-799a-48ab-ae0a-c68ccc69fb4f%2Fovrbgk_processed.png&w=3840&q=75)
Transcribed Image Text:Find the chromatic number of each of the graphs given below.
(a) The path graph P15
X (P15) =
(b) The cycle graph C12
X (C12) =
(c) The cycle graph C13
X
(C13) =
(d) The complete bipartite graph K6,13
X (K6,13) =
(e) The complete graph K15
X (K15)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Chromatic number of path graph Pn is 2
Chromatic number of cycle graph Cn is 3 if n is odd otherwise 2
Chromatic number of complete bipartite graph Km,n is max{m,n}
Chromatic number of complete graph Kn is n
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)