Find the average value gave of the function g on the given interval. g(x) = 5x, [1,27] gave =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

5.3 Q7) Hey! I need help with the following calc question, thank you!

### Finding the Average Value of a Function

In this educational module, we will learn how to find the average value \( g_{\text{ave}} \) of a given function over a specified interval. 

#### Example Problem

**Task:** Find the average value \( g_{\text{ave}} \) of the function \( g \) on the given interval.

The function provided is:
\[ g(x) = 5\sqrt[3]{x} \]

The interval given is:
\[ [1, 27] \]

#### Calculation

To find the average value of the function \( g \) over the interval \( [1, 27] \), use the following formula for the average value of a continuous function \( g \) on the interval \([a, b]\):
\[ g_{\text{ave}} = \frac{1}{b - a} \int_{a}^{b} g(x) \, dx \]

Here, \( a = 1 \) and \( b = 27 \). 

The function to be integrated is:
\[ g(x) = 5\sqrt[3]{x} \]

Substitute \( g(x) \), \( a \), and \( b \) into the formula:
\[ g_{\text{ave}} = \frac{1}{27 - 1} \int_{1}^{27} 5\sqrt[3]{x} \, dx \]

Simplify the expression:
\[ g_{\text{ave}} = \frac{1}{26} \int_{1}^{27} 5\sqrt[3]{x} \, dx \]

#### Integral Calculation

To solve the integral:
\[ \int_{1}^{27} 5\sqrt[3]{x} \, dx \]

We use the antiderivative of \( 5x^{1/3} \):
\[ \int 5x^{1/3} \, dx = 5 \cdot \frac{3}{4} x^{4/3} = \frac{15}{4} x^{4/3} \]

Evaluate this antiderivative at the bounds 1 and 27:
\[ \left[ \frac{15}{4} x^{4/3} \right]_{1}^{27} \]

Calculate the definite integral:
\[ \frac{15}{4} \left( 27^{4/3} -
Transcribed Image Text:### Finding the Average Value of a Function In this educational module, we will learn how to find the average value \( g_{\text{ave}} \) of a given function over a specified interval. #### Example Problem **Task:** Find the average value \( g_{\text{ave}} \) of the function \( g \) on the given interval. The function provided is: \[ g(x) = 5\sqrt[3]{x} \] The interval given is: \[ [1, 27] \] #### Calculation To find the average value of the function \( g \) over the interval \( [1, 27] \), use the following formula for the average value of a continuous function \( g \) on the interval \([a, b]\): \[ g_{\text{ave}} = \frac{1}{b - a} \int_{a}^{b} g(x) \, dx \] Here, \( a = 1 \) and \( b = 27 \). The function to be integrated is: \[ g(x) = 5\sqrt[3]{x} \] Substitute \( g(x) \), \( a \), and \( b \) into the formula: \[ g_{\text{ave}} = \frac{1}{27 - 1} \int_{1}^{27} 5\sqrt[3]{x} \, dx \] Simplify the expression: \[ g_{\text{ave}} = \frac{1}{26} \int_{1}^{27} 5\sqrt[3]{x} \, dx \] #### Integral Calculation To solve the integral: \[ \int_{1}^{27} 5\sqrt[3]{x} \, dx \] We use the antiderivative of \( 5x^{1/3} \): \[ \int 5x^{1/3} \, dx = 5 \cdot \frac{3}{4} x^{4/3} = \frac{15}{4} x^{4/3} \] Evaluate this antiderivative at the bounds 1 and 27: \[ \left[ \frac{15}{4} x^{4/3} \right]_{1}^{27} \] Calculate the definite integral: \[ \frac{15}{4} \left( 27^{4/3} -
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning