1 Starting With Matlab 2 Creating Arrays 3 Mathematical Operations With Arrays 4 Using Script Files And Managing Data 5 Two-dimensional Plots 6 Programming In Matlab 7 User-defined Functions And Function Files 8 Polynomials, Curve Fitting, And Interpolation 9 Applications In Numerical Analysis 10 Three-dimensional Plots 11 Symbolic Math Chapter1: Starting With Matlab
Chapter Questions Section: Chapter Questions
Problem 1P Problem 2P: Calculate: (a) 8+802.6+e3.53 (b) 175)+733.131/4+550.41 Problem 3P: Calculate: (a) 23+453160.7+log10589006 (b) (36.12.25)(e2.3+20) Problem 4P: Calculate: (a) 3.822.754125+5.2+1.853.5 (b) 2.110615.21053610113 Problem 5P: Calculate: (a)sin0.2cos/6+tan72 (b) (tan64cos15)+sin237cos220 Problem 6P: Define the varialbe z as z = 4.5; than evaluate: (a) 0.44+3.1z2162.3z80.7 (b) z323/z2+17.53 Problem 7P: Define the variable t as t= 3.2; then evalute: (a) 12e2t3.81t3 (b) 6t2+6t2t21 Problem 8P: Define the variable xandy as x = 6.5 and y = 3.8; then evaluate: (a) x2+y22/3+xyyx (b) x+yxy2+2x2xy2 Problem 9P: Define the variables a, b, c, and d as: c= 4.6, d = 1.7, a = cd2, and b=c+acd; then evaluate: (a)... Problem 10P: Two trigonometric identities are given by: (a) cos2xsin2x=12sin2x (b) tanxsinx2tanx=1cosx2 For each... Problem 11P: Two trigonometric identities are given by: (a) sinx+cosx2=1+2sinxcosx (b)... Problem 12P: Define two variables: alpha =8, and beta = 6. Using these variables, show that the following... Problem 13P: Given: x2cosxdx=2xcosx+x22sinx . Use MATLAB to calculaet the following difinite integral:... Problem 14P: A rectangular box has the dimensions shown. (a) Determine the angle BAC to the nearest degree. (b)... Problem 15P: The are length of a segment of a parabola ABC is given by: LABC=a2+4h2+2ha+2ha2+1 Determine LABC if... Problem 16P: The three shown circles, with radius 15 in., 10.5 in., and 4.5 in., are tangent to each other. (a)... Problem 17P: A frustum of cone is filled with ice cream such that the portion above the cone is a hemisphere.... Problem 18P: 18. In the triangle shown a =27 in., b 43 in., c=57 in. Define a, b, and c as variables, and then:... Problem 19P: For the triangle shown, a = 72°, ß=43°, and its perimeter is p = 114 mm. Define a, ß, and p, as... Problem 20P: The distance d from a point P (xp,yp,zp) to the line that passes through the two points A (xA,yA,zA)... Problem 21P: The perimeter of an ellipse can be approximated by: P=(a+b)3(3a+b)(a+3b)a+b Calculate the perimeter... Problem 22P: A total of 4217 eggs have w be packed in boxes that can hold 36 eggs each. By typing one line... Problem 23P: A total of 777 people have to be transported using buses that have 46 seats and vans that have 12... Problem 24P: Change the display to format long g. Assign the number 7E8/13 to a variable, and then use the... Problem 25P: The voltage difference Vabbetween points a and b in the Wheatstone bride circuit is given by:... Problem 26P: The current in a series RCL circuit is given by: I=VR2(L1C)2 Where =2 f. Calculate I for the... Problem 27P: The monthly payment M of a mortgage P for n years with a fixed annual interest rate r can be... Problem 28P: The number of permutations nProf taking r Objects out of n objects without repetition is given by:... Problem 29P: The number of combinations Cn,r of taking r objects out of n objects is given by: aye In the... Problem 30P: The equivalent resistance of two resistors R1and R2connected in parallel is given by Req=R1R2R1+R2 .... Problem 31P: The output voltage Voutin the circuit shown is given by (Millman’s theorem):... Problem 32P: Radioactive decay of carbon-14 is used for estimating the age of organic material. The decay is... Problem 33P: The greatest common divisor is the largest positive integer that divides the numbers without a... Problem 34P: The amount of energy E (in joules) that is released by an earthquake is given by: E=1.741019101.44M... Problem 35P: According to the Doppler effect of light, the perceived wavelength ?p, of a light source with a... Problem 36P: Newton’s law of cooling gives the temperature T(t) of an object at time tin terms of T0, its... Problem 37P: The velocity v and the falling distance d as a function of time of a skydiver that experience the... Problem 38P: Use the Help Window to find a display format that displays the output as a ratio of integers. For... Problem 39P: Gosper’s approximation for factorials is given by: n!=2n+13nnen Use the formula for calculating 19!.... Problem 40P: According to Newton’s law of universal gravitation, the attraction force between two bodies is given... Problem 1P
Related questions
Find the area of the shaded region. The graph depicts the standard normal distribution of bone density scores with mean 0 and standard deviation 1.
z= -0.85 and z= 1.25
The area of the shaded region is __________ (Rounded to four decimal places as needed.)
Transcribed Image Text: 00
01
02
03
04
as
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2.9
3.0
3.1
3.2
3.3
3.4
3.50
and up
Standard Normal (z) Distribution:
.00
5000
5398
5795 5832
6179
6217
6554
659
6950
.7291
7257
7580
7881
8159
01
5040
5438
8413
8643
8849
9032
9049
9192
9207
9332 9345
9452
9463
.9554 9564
9641
9713
9772
9981
9987
9861
9893
9918 9920
9938
9990
9993
9995
9997
9999
7910
8186 8212
8438
8665
9719
9778
9826
9864
.9953 .9955
.9965
9974
1645 0.9500
2.575 0.9950
02
5080
5478
5871
6255
6628
6985
7324
7642
7939
9966
9896 9898
9922
9941
8461
8686
8868
9066
9995
9997
9222
9357
9414
9673
9656
9726
9783
9030
9868
9956
9967
9975 9976
9982
9982
9987 9987
9991
9991
9994
POSITIVE Z Scores
9997
.03
5120
5910
6293
6664
04
S160
$199
.5657 5696
5948
5987
6331
6368
6700
6736
7019
7054
.7088
7357 .7389 7422
3673
.7704
7734
7995
8023 8051
8289
.8315
8631
8749
8238
8485
8708
8907
9082
9236
9370
9484
9582
9664
9732
9788
9834
9871
9901
9925
9943
9957
9968
9977
9983
9988
9991
9994
9996
9997
Cumulative Area from the LEFT
05.06.07
08
5239
5279
.5636 5675
6026 6064
6443
8508
8729
8925
.9099
9251
9382
9495
9591
9671
9738
.9793
.9830
.9875
.9904
9927
9945 .9946
NOTE: For values of z above 3.49, use 0.9999 for the area.
"Use these common values that result from interpolation
z score
9115
9265
9505
A 9599
9678
9744
.9798
9842
.9959
9960
9909
9970
9977 9978
9984
9988
9992
9994
9996
9997
9984
9909
9992
.6406
6772
9997
7123
3454
.7764
.8554
8770
8962
.9131
.9681
.9906 .9909
9929
9931
9279
9406
9515
.9608
.9686
.9750
.9603
9996
9961
9971
9979
9985
6866
.9992
9994
9666
9997
8099
7157
7486
7794
8078
8340
8577
8790
8900
.9147
9292
9416 9429
9535
9756
.9808
5319
5714
9525
9616 9625
9693
9699
9761
9812
9854
9887
9913
9934
9150
6103
6480
6844
7190
7517
.7823
8106
8365
8599
8810
8997
9162
9306
9972
9979
9985
9989
9992
.9995
9996
9997
-9884
.9911
9932
.9949 ..9951
99629963
9975
9900
9866
9990
9993
9995
9996
9997
09
5359
5753
6141
6517
6879
7224
7549
.7852
8133
8389
8621
8830
9015
9177
9319
9441
9545
9706
9817
9857
9890
9916
.9936
9964
.9974
9901
9866
9990
9993
9997
9998
Common Critical Valux
Confidence | Critical
Level
0.90
0.95
0.99
1.645
1.96
2.575
Transcribed Image Text: better print out
NEGATIVE Z Scores
-3.50
and
lower
-33
-32
-3.1
-3.0
-2.9
-2.8
-2.7
-2.6
-2.5
-2.4
-2.3
-22
-21
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-0.9
-0.8
-07
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1
-0.0
Standard Normal (2) Distribution: Cumulative Area from the LEFT
02
.05
.06
.00
0026
0035
0047
0062
0001
0005
.0003 0003 .0003 .0003 0003 0003 .0003
0005 0005 0004 0004 0004
0007 0007 0006 0006 0006 0006
0008
0010
0009 .0009 .0009
0008
0013
oon
0019
.0016
0022
0021
0030 0029
0082
0107
0139
0179
0228
0287
0359
0446
0548
0668
0808
0968
1151
1357
1587
1841
2119
2420
2743
3085
3666
4207
4602
5000
0080
0104
0136
0174
0222
0281
0351
0436
0537
0655
0793
0951
3131
1335
0013
0013
0012
0018 0018
0016
0025
0024 .0023
0023
0034
0033 0032
0031
0045
0044 0043 0041
0060 0050 0057 .0055
03
0170
0217
0274
0344
0427
0526
0643
0778
0934
1112
0078 .0075
0102
0099
0132
0129
0166
0212
0268
1314
1539
1788
2061
2358
2676
1814
2090
2389
2709
3050
3015
3409
3372
3783
3745
4168
4129
4562
4522
4960 4920
0012
.0017
0336
0418
0516
0630
0764
0918
1093
1292
1515
1762
2033
2327
.04
2981
3707
4090
4483
4680
0040
0054
.0073 .0071
0096
0125
0162
0207
0262
0094
0122
0158
0329
0322
0409 0401
0202
0256
05050495
0618
0606
0749
0735
0901 0885
3075
3056
3251
2946
3300
1271
3492
1469
1736
3711
2005 1977
2296
2266
2611
2578
2912
3264
3632
4052
4013
4443
4404
4840 4801
NOTE: For values of z below-3.49, use 0.0001 for the area.
"Use these common values that result from interpolation
z score Area
-1645 0.0500
-2.575 0.0050
0006
.0008
.com
.0015
0004 0004
0039
0052
.0069
0091
019
0154
0197
0250
0314
0392
0485
0594
0721
0869
3038
1230
3446
1685
1949
2236
2546
2877
.07
3594
3974
4364
0003 0003
0005
0008
08
0007
.com
0010
0015
0014
0021
0020
0028
0027
0038 0037
0051 . 0049
00680066
0307
0384
0475
0582
0708
0853
3020
1210
3423
1660
1922
2206
2514
2843
0089 0087
0116
0113
0150
0146
0192
0108
0244
0239
3557
3936
0004
0005
4721
0301
0375
0465
0571
0694
0838
3003
3156
3520
09
3897
4206
A6
0002
0003
DO05
0007
0010
0014
0019
0026
0036
_0048
0064
0064
סום
1190 1170
3401
1635
1894
2177
2483
2810
0143
0183
0233
0294
0367
0455
0559
0681
0823
0985
3379
3611
1867
2148
2451
2776
3121
3483
3859
A247
A641
Definition Definition Measure of central tendency that is the average of a given data set. The mean value is evaluated as the quotient of the sum of all observations by the sample size. The mean, in contrast to a median, is affected by extreme values. Very large or very small values can distract the mean from the center of the data. Arithmetic mean: The most common type of mean is the arithmetic mean. It is evaluated using the formula: μ = 1 N ∑ i = 1 N x i Other types of means are the geometric mean, logarithmic mean, and harmonic mean. Geometric mean: The nth root of the product of n observations from a data set is defined as the geometric mean of the set: G = x 1 x 2 ... x n n Logarithmic mean: The difference of the natural logarithms of the two numbers, divided by the difference between the numbers is the logarithmic mean of the two numbers. The logarithmic mean is used particularly in heat transfer and mass transfer. ln x 2 − ln x 1 x 2 − x 1 Harmonic mean: The inverse of the arithmetic mean of the inverses of all the numbers in a data set is the harmonic mean of the data. 1 1 x 1 + 1 x 2 + ...
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 2 images