Find the area of a triangle having vertices A(3, 2), B(1, 8), and C(8, 12).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement:**
Find the area of a triangle having vertices \( A(3, 2) \), \( B(1, 8) \), and \( C(8, 12) \).
---
To find the area of a triangle given its vertices, use the formula for the area \( A \) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\):
\[ A = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \]
By plugging in the coordinates of vertices \( A(3, 2) \), \( B(1, 8) \), and \( C(8, 12) \), the formula becomes:
\[ A = \frac{1}{2} \left| 3(8-12) + 1(12-2) + 8(2-8) \right| \]
\[ A = \frac{1}{2} \left| 3(-4) + 1(10) + 8(-6) \right| \]
\[ A = \frac{1}{2} \left| -12 + 10 - 48 \right| \]
\[ A = \frac{1}{2} \left| -50 \right| \]
\[ A = \frac{1}{2} \times 50 \]
\[ A = 25 \]
Thus, the area of the triangle is \( 25 \) square units.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff4f4865a-ef7d-48b6-9e5b-0e85084b2d7c%2F63462b97-ec6f-49ce-9b05-382327c88958%2Fmru1of_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the area of a triangle having vertices \( A(3, 2) \), \( B(1, 8) \), and \( C(8, 12) \).
---
To find the area of a triangle given its vertices, use the formula for the area \( A \) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\):
\[ A = \frac{1}{2} \left| x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2) \right| \]
By plugging in the coordinates of vertices \( A(3, 2) \), \( B(1, 8) \), and \( C(8, 12) \), the formula becomes:
\[ A = \frac{1}{2} \left| 3(8-12) + 1(12-2) + 8(2-8) \right| \]
\[ A = \frac{1}{2} \left| 3(-4) + 1(10) + 8(-6) \right| \]
\[ A = \frac{1}{2} \left| -12 + 10 - 48 \right| \]
\[ A = \frac{1}{2} \left| -50 \right| \]
\[ A = \frac{1}{2} \times 50 \]
\[ A = 25 \]
Thus, the area of the triangle is \( 25 \) square units.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)