Find the area enclosed by one leaf of the rose r= 9 cos (50).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Problem Statement:**

"Find the area enclosed by one leaf of the rose \( r = 9 \cos (5\theta) \)."

**Solution Overview:**

To determine the area enclosed by one leaf of a rose curve given in polar coordinates, \( r = 9 \cos (5\theta) \), you use the formula for the area in polar coordinates:

\[ 
A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \, d\theta 
\]

For a rose curve of the form \( r = a \cos(n\theta) \), each leaf occurs from \( \theta = 0 \) to \( \theta = \frac{\pi}{n} \).

In this specific case, \( r = 9 \cos(5\theta) \), the parameter \( a \) is 9 and \( n \) is 5. Thus, the integral bounds for one leaf will range from \( \alpha = 0 \) to \( \beta = \frac{\pi}{5} \).

**Detailed Steps:**

1. **Square the function:**

\[ 
r^2 = (9 \cos(5\theta))^2 = 81 \cos^2(5\theta) 
\]

2. **Set up the integral for the area:**

\[ 
A = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} 81 \cos^2(5\theta) \, d\theta 
\]

3. **Simplify the integral:**

Use the trigonometric identity:

\[ 
\cos^2(x) = \frac{1 + \cos(2x)}{2} 
\]

So,

\[ 
81 \cos^2(5\theta) = 81 \cdot \frac{1 + \cos(10\theta)}{2} = \frac{81}{2} (1 + \cos(10\theta)) 
\]

4. **Integrate:**

\[ 
A = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} \frac{81}{2} (1 + \cos(10\theta)) \, d\theta 
\]

\[ 
A = \frac{81}{4} \int_{0}^{\frac{\pi}{5}} (1
Transcribed Image Text:**Problem Statement:** "Find the area enclosed by one leaf of the rose \( r = 9 \cos (5\theta) \)." **Solution Overview:** To determine the area enclosed by one leaf of a rose curve given in polar coordinates, \( r = 9 \cos (5\theta) \), you use the formula for the area in polar coordinates: \[ A = \frac{1}{2} \int_{\alpha}^{\beta} r^2 \, d\theta \] For a rose curve of the form \( r = a \cos(n\theta) \), each leaf occurs from \( \theta = 0 \) to \( \theta = \frac{\pi}{n} \). In this specific case, \( r = 9 \cos(5\theta) \), the parameter \( a \) is 9 and \( n \) is 5. Thus, the integral bounds for one leaf will range from \( \alpha = 0 \) to \( \beta = \frac{\pi}{5} \). **Detailed Steps:** 1. **Square the function:** \[ r^2 = (9 \cos(5\theta))^2 = 81 \cos^2(5\theta) \] 2. **Set up the integral for the area:** \[ A = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} 81 \cos^2(5\theta) \, d\theta \] 3. **Simplify the integral:** Use the trigonometric identity: \[ \cos^2(x) = \frac{1 + \cos(2x)}{2} \] So, \[ 81 \cos^2(5\theta) = 81 \cdot \frac{1 + \cos(10\theta)}{2} = \frac{81}{2} (1 + \cos(10\theta)) \] 4. **Integrate:** \[ A = \frac{1}{2} \int_{0}^{\frac{\pi}{5}} \frac{81}{2} (1 + \cos(10\theta)) \, d\theta \] \[ A = \frac{81}{4} \int_{0}^{\frac{\pi}{5}} (1
Expert Solution
steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,