Find the arc length of the curve y =(2²-8 In(z)) from z = 2 to z = 5. Length = 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Calculating the Arc Length of a Curve**
**Problem Statement:**
Find the arc length of the curve \( y = \frac{1}{8} \left( x^2 - 8 \ln(x) \right) \) from \( x = 2 \) to \( x = 5 \).
**Solution:**
1. **Identify the Curve Equation:**
The given curve is \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \).
2. **Apply the Arc Length Formula:**
For a curve \( y = f(x) \) from \( x = a \) to \( x = b \), the arc length \( L \) is given by:
\[
L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
\]
3. **Differentiate \( y \) with respect to \( x \) to find \( \frac{dy}{dx} \):**
\( y = \frac{1}{8} (x^2 - 8 \ln(x)) \)
First, simplify the function:
\[
y = \frac{1}{8} x^2 - \ln(x)
\]
Differentiate \( y \):
\[
\frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{8} x^2 - \ln(x) \right) = \frac{1}{4} x - \frac{1}{x}
\]
4. **Substitute \( \frac{dy}{dx} \) into the Arc Length Formula:**
\[
\left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{4} x - \frac{1}{x} \right)^2
\]
Hence,
\[
L = \int_{2}^{5} \sqrt{1 + \left( \frac{1}{4} x - \frac{1}{x} \right)^2} \, dx
\]
5. **Evaluate the Integral:**
The evaluation of this integral requires calculus techniques, which may involve numerical methods or software tools for accurate and precise](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa59c8a62-6d27-4c14-9dc5-c4241c4a7fe0%2F575912ac-18f6-4698-be5c-632ab9514afa%2F35rx3jp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Calculating the Arc Length of a Curve**
**Problem Statement:**
Find the arc length of the curve \( y = \frac{1}{8} \left( x^2 - 8 \ln(x) \right) \) from \( x = 2 \) to \( x = 5 \).
**Solution:**
1. **Identify the Curve Equation:**
The given curve is \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \).
2. **Apply the Arc Length Formula:**
For a curve \( y = f(x) \) from \( x = a \) to \( x = b \), the arc length \( L \) is given by:
\[
L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
\]
3. **Differentiate \( y \) with respect to \( x \) to find \( \frac{dy}{dx} \):**
\( y = \frac{1}{8} (x^2 - 8 \ln(x)) \)
First, simplify the function:
\[
y = \frac{1}{8} x^2 - \ln(x)
\]
Differentiate \( y \):
\[
\frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{8} x^2 - \ln(x) \right) = \frac{1}{4} x - \frac{1}{x}
\]
4. **Substitute \( \frac{dy}{dx} \) into the Arc Length Formula:**
\[
\left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{4} x - \frac{1}{x} \right)^2
\]
Hence,
\[
L = \int_{2}^{5} \sqrt{1 + \left( \frac{1}{4} x - \frac{1}{x} \right)^2} \, dx
\]
5. **Evaluate the Integral:**
The evaluation of this integral requires calculus techniques, which may involve numerical methods or software tools for accurate and precise
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

