Find the arc length of the curve y =(2²-8 In(z)) from z = 2 to z = 5. Length = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Calculating the Arc Length of a Curve**

**Problem Statement:**

Find the arc length of the curve \( y = \frac{1}{8} \left( x^2 - 8 \ln(x) \right) \) from \( x = 2 \) to \( x = 5 \).

**Solution:**

1. **Identify the Curve Equation:**
   
   The given curve is \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \).

2. **Apply the Arc Length Formula:**

   For a curve \( y = f(x) \) from \( x = a \) to \( x = b \), the arc length \( L \) is given by:
   \[
   L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx
   \]

3. **Differentiate \( y \) with respect to \( x \) to find \( \frac{dy}{dx} \):**
   
   \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \)
   
   First, simplify the function:
   \[
   y = \frac{1}{8} x^2 - \ln(x)
   \]
   
   Differentiate \( y \):
   \[
   \frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{8} x^2 - \ln(x) \right) = \frac{1}{4} x - \frac{1}{x}
   \]

4. **Substitute \( \frac{dy}{dx} \) into the Arc Length Formula:**

   \[
   \left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{4} x - \frac{1}{x} \right)^2
   \]
   
   Hence,
   \[
   L = \int_{2}^{5} \sqrt{1 + \left( \frac{1}{4} x - \frac{1}{x} \right)^2} \, dx
   \]

5. **Evaluate the Integral:**

   The evaluation of this integral requires calculus techniques, which may involve numerical methods or software tools for accurate and precise
Transcribed Image Text:**Calculating the Arc Length of a Curve** **Problem Statement:** Find the arc length of the curve \( y = \frac{1}{8} \left( x^2 - 8 \ln(x) \right) \) from \( x = 2 \) to \( x = 5 \). **Solution:** 1. **Identify the Curve Equation:** The given curve is \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \). 2. **Apply the Arc Length Formula:** For a curve \( y = f(x) \) from \( x = a \) to \( x = b \), the arc length \( L \) is given by: \[ L = \int_{a}^{b} \sqrt{1 + \left( \frac{dy}{dx} \right)^2} \, dx \] 3. **Differentiate \( y \) with respect to \( x \) to find \( \frac{dy}{dx} \):** \( y = \frac{1}{8} (x^2 - 8 \ln(x)) \) First, simplify the function: \[ y = \frac{1}{8} x^2 - \ln(x) \] Differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \frac{1}{8} x^2 - \ln(x) \right) = \frac{1}{4} x - \frac{1}{x} \] 4. **Substitute \( \frac{dy}{dx} \) into the Arc Length Formula:** \[ \left( \frac{dy}{dx} \right)^2 = \left( \frac{1}{4} x - \frac{1}{x} \right)^2 \] Hence, \[ L = \int_{2}^{5} \sqrt{1 + \left( \frac{1}{4} x - \frac{1}{x} \right)^2} \, dx \] 5. **Evaluate the Integral:** The evaluation of this integral requires calculus techniques, which may involve numerical methods or software tools for accurate and precise
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,