Find the arc length along a circle of radius 10 units subtended by an angle of 260°. Round your answer to the nearest tenth. Provide your answer below: units
Find the arc length along a circle of radius 10 units subtended by an angle of 260°. Round your answer to the nearest tenth. Provide your answer below: units
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
![**Problem Statement:**
Find the arc length along a circle of radius 10 units subtended by an angle of 260°. Round your answer to the nearest tenth.
**Solution:**
To find the arc length \(L\) of a circle, the formula is:
\[
L = \frac{\theta}{360^\circ} \times 2\pi r
\]
where:
- \( \theta \) is the central angle in degrees.
- \( r \) is the radius of the circle.
For this problem:
- \( \theta = 260^\circ \)
- \( r = 10 \) units
Plug these values into the formula:
\[
L = \frac{260}{360} \times 2\pi \times 10
\]
Calculate the arc length and round to the nearest tenth:
1. Simplify \(\frac{260}{360}\) to get \(\frac{13}{18}\).
2. Compute \( L = \frac{13}{18} \times 20\pi \).
3. Approximate \(\pi \approx 3.1416\).
4. Calculate \(L \approx \frac{13}{18} \times 62.832\).
5. Final answer: \(L \approx 45.4\) units.
**Answer:**
The arc length is approximately 45.4 units.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F160bd4d2-de21-4fca-9dfd-510bbf89e4e5%2F5fbf5087-2825-47b5-814f-3feef9c77864%2Fnng1hg9_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find the arc length along a circle of radius 10 units subtended by an angle of 260°. Round your answer to the nearest tenth.
**Solution:**
To find the arc length \(L\) of a circle, the formula is:
\[
L = \frac{\theta}{360^\circ} \times 2\pi r
\]
where:
- \( \theta \) is the central angle in degrees.
- \( r \) is the radius of the circle.
For this problem:
- \( \theta = 260^\circ \)
- \( r = 10 \) units
Plug these values into the formula:
\[
L = \frac{260}{360} \times 2\pi \times 10
\]
Calculate the arc length and round to the nearest tenth:
1. Simplify \(\frac{260}{360}\) to get \(\frac{13}{18}\).
2. Compute \( L = \frac{13}{18} \times 20\pi \).
3. Approximate \(\pi \approx 3.1416\).
4. Calculate \(L \approx \frac{13}{18} \times 62.832\).
5. Final answer: \(L \approx 45.4\) units.
**Answer:**
The arc length is approximately 45.4 units.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning