Find the antiderivtive: /102³-52² +7 x6 -dx = + C

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
### Find the Antiderivative

Evaluate the integral:
\[
\int \frac{10x^3 - 5x^2 + 7}{x^6} \, dx
\]

**Solution Process:**

1. **Simplify the Expression:**
   - Divide each term in the numerator by \(x^6\):
     \[
     \int \left( \frac{10x^3}{x^6} - \frac{5x^2}{x^6} + \frac{7}{x^6} \right) \, dx = \int \left( 10x^{-3} - 5x^{-4} + 7x^{-6} \right) \, dx
     \]

2. **Find the Antiderivative of Each Term:**
   - Use the power rule for integration: \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \)

   - Antiderivative of \(10x^{-3}\):
     \[
     10 \cdot \frac{x^{-2}}{-2} = -5x^{-2}
     \]

   - Antiderivative of \(-5x^{-4}\):
     \[
     -5 \cdot \frac{x^{-3}}{-3} = \frac{5}{3}x^{-3}
     \]

   - Antiderivative of \(7x^{-6}\):
     \[
     7 \cdot \frac{x^{-5}}{-5} = -\frac{7}{5}x^{-5}
     \]

3. **Combine the Results:**
   \[
   -5x^{-2} + \frac{5}{3}x^{-3} - \frac{7}{5}x^{-5} + C
   \]

This results in the complete antiderivative:

\[
\int \frac{10x^3 - 5x^2 + 7}{x^6} \, dx = -5x^{-2} + \frac{5}{3}x^{-3} - \frac{7}{5}x^{-5} + C
\]

where \(C\) is the constant of integration.
Transcribed Image Text:### Find the Antiderivative Evaluate the integral: \[ \int \frac{10x^3 - 5x^2 + 7}{x^6} \, dx \] **Solution Process:** 1. **Simplify the Expression:** - Divide each term in the numerator by \(x^6\): \[ \int \left( \frac{10x^3}{x^6} - \frac{5x^2}{x^6} + \frac{7}{x^6} \right) \, dx = \int \left( 10x^{-3} - 5x^{-4} + 7x^{-6} \right) \, dx \] 2. **Find the Antiderivative of Each Term:** - Use the power rule for integration: \(\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \) - Antiderivative of \(10x^{-3}\): \[ 10 \cdot \frac{x^{-2}}{-2} = -5x^{-2} \] - Antiderivative of \(-5x^{-4}\): \[ -5 \cdot \frac{x^{-3}}{-3} = \frac{5}{3}x^{-3} \] - Antiderivative of \(7x^{-6}\): \[ 7 \cdot \frac{x^{-5}}{-5} = -\frac{7}{5}x^{-5} \] 3. **Combine the Results:** \[ -5x^{-2} + \frac{5}{3}x^{-3} - \frac{7}{5}x^{-5} + C \] This results in the complete antiderivative: \[ \int \frac{10x^3 - 5x^2 + 7}{x^6} \, dx = -5x^{-2} + \frac{5}{3}x^{-3} - \frac{7}{5}x^{-5} + C \] where \(C\) is the constant of integration.
**Problem Statement:**

Find the integral of the expression:

\[
\int \left( -3x^6 + \frac{6}{x} - \frac{3}{x^6} + \sqrt{x} \right) \, dx
\]

After evaluating the integral, include a constant of integration \( C \).

---

**Explanation:**

The given expression is a polynomial combined with rational and radical terms. To integrate, each term should be approached using basic integral formulas:

1. **Polynomial Integration:** Integrate \( x^n \) as \( \frac{x^{n+1}}{n+1} \).
2. **Rational Integration:** For terms like \( \frac{1}{x^n} \), rewrite as \( x^{-n} \) and then apply the polynomial rule.
3. **Radical Integration:** Rewrite \( \sqrt{x} \) as \( x^{1/2} \) and integrate.

The solution will include a constant of integration, denoted as \( C \).
Transcribed Image Text:**Problem Statement:** Find the integral of the expression: \[ \int \left( -3x^6 + \frac{6}{x} - \frac{3}{x^6} + \sqrt{x} \right) \, dx \] After evaluating the integral, include a constant of integration \( C \). --- **Explanation:** The given expression is a polynomial combined with rational and radical terms. To integrate, each term should be approached using basic integral formulas: 1. **Polynomial Integration:** Integrate \( x^n \) as \( \frac{x^{n+1}}{n+1} \). 2. **Rational Integration:** For terms like \( \frac{1}{x^n} \), rewrite as \( x^{-n} \) and then apply the polynomial rule. 3. **Radical Integration:** Rewrite \( \sqrt{x} \) as \( x^{1/2} \) and integrate. The solution will include a constant of integration, denoted as \( C \).
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning