Find the angle between the vectors, approximate your answer to the nearest tenth: v = (-3,-2), w = (1,5) O 112.4° 67.6° O 45.0° 135.0°

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Finding the Angle Between Vectors**

---

To find the angle between two vectors \( \mathbf{v} = (-3, -2) \) and \( \mathbf{w} = (1, 5) \), we use the dot product formula and the magnitudes of each vector to apply the following formula:

\[
\cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \cdot ||\mathbf{w}||}
\]

Where \( \theta \) is the angle between the vectors. 

**Steps:**

1. **Calculate the dot product** of the two vectors:
   \[
   \mathbf{v} \cdot \mathbf{w} = (-3)(1) + (-2)(5) = -3 - 10 = -13
   \]

2. **Calculate the magnitude** of each vector:
   \[
   ||\mathbf{v}|| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}
   \]
   \[
   ||\mathbf{w}|| = \sqrt{(1)^2 + (5)^2} = \sqrt{1 + 25} = \sqrt{26}
   \]

3. **Apply the values to the formula**:
   \[
   \cos(\theta) = \frac{-13}{\sqrt{13} \cdot \sqrt{26}} = \frac{-13}{\sqrt{338}} = \frac{-13}{18.38} \approx -0.707
   \]

4. **Calculate \( \theta \) using the inverse cosine function**:
   \[
   \theta = \cos^{-1}(-0.707) \approx 135.0^\circ
   \]

**Answer Choices:**

- 112.4°
- 67.6°
- 45.0°
- 135.0°

Since the correct calculation for \( \theta \) is approximately 135.0°, this is the correct answer:
   
- 135.0° (Selected)
Transcribed Image Text:**Finding the Angle Between Vectors** --- To find the angle between two vectors \( \mathbf{v} = (-3, -2) \) and \( \mathbf{w} = (1, 5) \), we use the dot product formula and the magnitudes of each vector to apply the following formula: \[ \cos(\theta) = \frac{\mathbf{v} \cdot \mathbf{w}}{||\mathbf{v}|| \cdot ||\mathbf{w}||} \] Where \( \theta \) is the angle between the vectors. **Steps:** 1. **Calculate the dot product** of the two vectors: \[ \mathbf{v} \cdot \mathbf{w} = (-3)(1) + (-2)(5) = -3 - 10 = -13 \] 2. **Calculate the magnitude** of each vector: \[ ||\mathbf{v}|| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \] \[ ||\mathbf{w}|| = \sqrt{(1)^2 + (5)^2} = \sqrt{1 + 25} = \sqrt{26} \] 3. **Apply the values to the formula**: \[ \cos(\theta) = \frac{-13}{\sqrt{13} \cdot \sqrt{26}} = \frac{-13}{\sqrt{338}} = \frac{-13}{18.38} \approx -0.707 \] 4. **Calculate \( \theta \) using the inverse cosine function**: \[ \theta = \cos^{-1}(-0.707) \approx 135.0^\circ \] **Answer Choices:** - 112.4° - 67.6° - 45.0° - 135.0° Since the correct calculation for \( \theta \) is approximately 135.0°, this is the correct answer: - 135.0° (Selected)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning