Find T, N, B, K, and 7 as functions of t if r(t) = (sin t)i + (V2 cos t )j + (sin t)k.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Find T, N, B,

Find T, N, B, K, and 7 as functions of t if
r(t) = (sin t)i + (V2 cos t )j + (sin t)k.
Transcribed Image Text:Find T, N, B, K, and 7 as functions of t if r(t) = (sin t)i + (V2 cos t )j + (sin t)k.
Expert Solution
Step 1

Consider the given vector,

rt=sinti+2costj+sintk

The formula for Tt is given as,

Tt=r'tr't

Now,

r't=costi+-2sintj+costk

and,

r't=cost2+-2sint2+cost2=2cos2t+2sin2t=2cos2t+sin2t=2

so, we get,

Tt=costi+-2sintj+costk2=cost2i-sintj+cost2k

Hence, the value of unit tangent vector T is cost2i-sintj+cost2k.

Step 2

Now, formula for unit normal vector is given as,

Nt=T'tT't

Since, Tt=cost2i-sintj+cost2k, so,

T't=-sint2i-costj-sint2k

and,

T't=-sint22+-cost2+-sint22=sin2t+cos2t=1

So, we get,

Nt=-sint2i-costj-sint2k1=-sint2i-costj-sint2k

Hence, the value of unit normal vector N is -sint2i-costj-sint2k.

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Quadrilaterals
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,