Find ST (x + y) dydx. 5 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question

5.1.1

To solve the given double integral, we need to evaluate the integral:

\[
\int_{5}^{7} \int_{4}^{5} (x + y) \, dy \, dx
\]

Let's solve this step by step.

### Step 1: Integrate with respect to \( y \)

The inner integral is:

\[
\int_{4}^{5} (x + y) \, dy
\]

This can be split into two separate integrals:

\[
\int_{4}^{5} x \, dy + \int_{4}^{5} y \, dy
\]

The first integral evaluates to:

\[
x \cdot [y]_{4}^{5} = x(5 - 4) = x
\]

The second integral evaluates to:

\[
\left[ \frac{y^2}{2} \right]_{4}^{5} = \frac{5^2}{2} - \frac{4^2}{2} = \frac{25}{2} - \frac{16}{2} = \frac{9}{2}
\]

The result of the inner integral is:

\[
x + \frac{9}{2}
\]

### Step 2: Integrate with respect to \( x \)

Now evaluate the outer integral:

\[
\int_{5}^{7} \left(x + \frac{9}{2}\right) \, dx
\]

This can also be split into:

\[
\int_{5}^{7} x \, dx + \int_{5}^{7} \frac{9}{2} \, dx
\]

The first integral evaluates to:

\[
\left[ \frac{x^2}{2} \right]_{5}^{7} = \frac{7^2}{2} - \frac{5^2}{2} = \frac{49}{2} - \frac{25}{2} = \frac{24}{2} = 12
\]

The second integral evaluates to:

\[
\frac{9}{2} \cdot [x]_{5}^{7} = \frac{9}{2}(7 - 5) = \frac{9}{2} \cdot 2 = 9
\]

Adding these together gives:

\[
12 + 9 = 21
\]

Therefore, the
Transcribed Image Text:To solve the given double integral, we need to evaluate the integral: \[ \int_{5}^{7} \int_{4}^{5} (x + y) \, dy \, dx \] Let's solve this step by step. ### Step 1: Integrate with respect to \( y \) The inner integral is: \[ \int_{4}^{5} (x + y) \, dy \] This can be split into two separate integrals: \[ \int_{4}^{5} x \, dy + \int_{4}^{5} y \, dy \] The first integral evaluates to: \[ x \cdot [y]_{4}^{5} = x(5 - 4) = x \] The second integral evaluates to: \[ \left[ \frac{y^2}{2} \right]_{4}^{5} = \frac{5^2}{2} - \frac{4^2}{2} = \frac{25}{2} - \frac{16}{2} = \frac{9}{2} \] The result of the inner integral is: \[ x + \frac{9}{2} \] ### Step 2: Integrate with respect to \( x \) Now evaluate the outer integral: \[ \int_{5}^{7} \left(x + \frac{9}{2}\right) \, dx \] This can also be split into: \[ \int_{5}^{7} x \, dx + \int_{5}^{7} \frac{9}{2} \, dx \] The first integral evaluates to: \[ \left[ \frac{x^2}{2} \right]_{5}^{7} = \frac{7^2}{2} - \frac{5^2}{2} = \frac{49}{2} - \frac{25}{2} = \frac{24}{2} = 12 \] The second integral evaluates to: \[ \frac{9}{2} \cdot [x]_{5}^{7} = \frac{9}{2}(7 - 5) = \frac{9}{2} \cdot 2 = 9 \] Adding these together gives: \[ 12 + 9 = 21 \] Therefore, the
Expert Solution
Step 1

Given: 5745x+ydydx

To evaluate the given iterated integral.

Following formulas are used to evaluate the given integral:

  xdy=xy+Cxndx=xn+1n+1+C  adx=ax+C

 

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning