Find sin t and cost for the given value of t. t = 480° sin t = cos t =

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please help me with this question.
**Problem Statement**

Find \(\sin t\) and \(\cos t\) for the given value of \(t\).

\[ t = 480^\circ \]

**Solutions**

\[\sin t = \_\_\_\_\_\_\_\_\_\_\]

\[\cos t = \_\_\_\_\_\_\_\_\_\_\]

**Explanation**

To find \(\sin t\) and \(\cos t\) for an angle of \(480^\circ\), first reduce the angle as follows:

1. Subtract \(360^\circ\) from the given angle to find its equivalent within the standard \(0^\circ\) to \(360^\circ\) range.
2. \(480^\circ - 360^\circ = 120^\circ\).

Now, use \(120^\circ\) to find the corresponding sine and cosine values.

**Trigonometric Values**

- \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\)
- \(\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}\)

Therefore:

\[ \sin 480^\circ = \frac{\sqrt{3}}{2} \]

\[ \cos 480^\circ = -\frac{1}{2} \]
Transcribed Image Text:**Problem Statement** Find \(\sin t\) and \(\cos t\) for the given value of \(t\). \[ t = 480^\circ \] **Solutions** \[\sin t = \_\_\_\_\_\_\_\_\_\_\] \[\cos t = \_\_\_\_\_\_\_\_\_\_\] **Explanation** To find \(\sin t\) and \(\cos t\) for an angle of \(480^\circ\), first reduce the angle as follows: 1. Subtract \(360^\circ\) from the given angle to find its equivalent within the standard \(0^\circ\) to \(360^\circ\) range. 2. \(480^\circ - 360^\circ = 120^\circ\). Now, use \(120^\circ\) to find the corresponding sine and cosine values. **Trigonometric Values** - \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\) - \(\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}\) Therefore: \[ \sin 480^\circ = \frac{\sqrt{3}}{2} \] \[ \cos 480^\circ = -\frac{1}{2} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning