Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
Please help me with this question.
![**Problem Statement**
Find \(\sin t\) and \(\cos t\) for the given value of \(t\).
\[ t = 480^\circ \]
**Solutions**
\[\sin t = \_\_\_\_\_\_\_\_\_\_\]
\[\cos t = \_\_\_\_\_\_\_\_\_\_\]
**Explanation**
To find \(\sin t\) and \(\cos t\) for an angle of \(480^\circ\), first reduce the angle as follows:
1. Subtract \(360^\circ\) from the given angle to find its equivalent within the standard \(0^\circ\) to \(360^\circ\) range.
2. \(480^\circ - 360^\circ = 120^\circ\).
Now, use \(120^\circ\) to find the corresponding sine and cosine values.
**Trigonometric Values**
- \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\)
- \(\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}\)
Therefore:
\[ \sin 480^\circ = \frac{\sqrt{3}}{2} \]
\[ \cos 480^\circ = -\frac{1}{2} \]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3a328885-7641-4d6d-85af-435d99e02dcf%2F04562640-8228-4170-8746-6ae836fd5002%2Fhzkcrnf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement**
Find \(\sin t\) and \(\cos t\) for the given value of \(t\).
\[ t = 480^\circ \]
**Solutions**
\[\sin t = \_\_\_\_\_\_\_\_\_\_\]
\[\cos t = \_\_\_\_\_\_\_\_\_\_\]
**Explanation**
To find \(\sin t\) and \(\cos t\) for an angle of \(480^\circ\), first reduce the angle as follows:
1. Subtract \(360^\circ\) from the given angle to find its equivalent within the standard \(0^\circ\) to \(360^\circ\) range.
2. \(480^\circ - 360^\circ = 120^\circ\).
Now, use \(120^\circ\) to find the corresponding sine and cosine values.
**Trigonometric Values**
- \(\sin 120^\circ = \sin(180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}\)
- \(\cos 120^\circ = \cos(180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}\)
Therefore:
\[ \sin 480^\circ = \frac{\sqrt{3}}{2} \]
\[ \cos 480^\circ = -\frac{1}{2} \]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning