Find R, in the network above for maximum power transfer and the maximum power, Pmaz, that can be transferred to the load. Take V = 7V, I = 4m A, R1 = 9kN, R2 = 8kN and R3 = 8kN R, = Pmaz = mW
Find R, in the network above for maximum power transfer and the maximum power, Pmaz, that can be transferred to the load. Take V = 7V, I = 4m A, R1 = 9kN, R2 = 8kN and R3 = 8kN R, = Pmaz = mW
Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
Related questions
Question
![### Circuit Analysis for Maximum Power Transfer
#### Problem Statement
Find \( R_L \) in the network above for maximum power transfer and the maximum power, \( P_{\text{max}} \), that can be transferred to the load. Given values are:
- \( V_1 = 7V \)
- \( I_1 = 4mA \)
- \( R_1 = 9k\Omega \)
- \( R_2 = 8k\Omega \)
- \( R_3 = 8k\Omega \)
#### Diagram Description
The circuit diagram consists of:
- A voltage source \( V_1 \) connected in series with a resistor \( R_1 \).
- A parallel combination of \( R_2 \) and \( R_3 \) branches off from the connection between \( V_1 \) and \( R_1 \).
- Current \( I_1 \) flows through the initial branch.
#### Calculations
1. **Find \( R_L \) for Maximum Power Transfer**
To achieve maximum power transfer, the load resistance \( R_L \) should be equal to the Thevenin equivalent resistance of the rest of the network.
**Thevenin’s Equivalent Resistance:**
\[
R_{\text{Thevenin}} = \left( \frac{R_2 \times R_3}{R_2 + R_3} \right) + R_1
\]
**Calculation:**
\[
R_{\text{eq (parallel)}} = \frac{8k \Omega \times 8k \Omega}{8k \Omega + 8k \Omega} = 4k \Omega
\]
\[
R_{\text{Thevenin}} = 4k \Omega + 9k \Omega = 13k \Omega
\]
Therefore, \( R_L = 13k\Omega \).
2. **Calculate Maximum Power \( P_{\text{max}} \) Transferable to the Load**
\( P_{\text{max}} \) is given by:
\[
P_{\text{max}} = \frac{{V_{\text{Thevenin}}}^2}{4 \times R_{\text{Thevenin}}}
\]
assume \( V_{\text{Thevenin}} \approx V_1 \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0c42d3d3-c669-4ebd-a92e-b9a728000a05%2F9c8dc73f-0e05-4601-bdf2-bca60f0c4ccc%2F718t62d_processed.png&w=3840&q=75)
Transcribed Image Text:### Circuit Analysis for Maximum Power Transfer
#### Problem Statement
Find \( R_L \) in the network above for maximum power transfer and the maximum power, \( P_{\text{max}} \), that can be transferred to the load. Given values are:
- \( V_1 = 7V \)
- \( I_1 = 4mA \)
- \( R_1 = 9k\Omega \)
- \( R_2 = 8k\Omega \)
- \( R_3 = 8k\Omega \)
#### Diagram Description
The circuit diagram consists of:
- A voltage source \( V_1 \) connected in series with a resistor \( R_1 \).
- A parallel combination of \( R_2 \) and \( R_3 \) branches off from the connection between \( V_1 \) and \( R_1 \).
- Current \( I_1 \) flows through the initial branch.
#### Calculations
1. **Find \( R_L \) for Maximum Power Transfer**
To achieve maximum power transfer, the load resistance \( R_L \) should be equal to the Thevenin equivalent resistance of the rest of the network.
**Thevenin’s Equivalent Resistance:**
\[
R_{\text{Thevenin}} = \left( \frac{R_2 \times R_3}{R_2 + R_3} \right) + R_1
\]
**Calculation:**
\[
R_{\text{eq (parallel)}} = \frac{8k \Omega \times 8k \Omega}{8k \Omega + 8k \Omega} = 4k \Omega
\]
\[
R_{\text{Thevenin}} = 4k \Omega + 9k \Omega = 13k \Omega
\]
Therefore, \( R_L = 13k\Omega \).
2. **Calculate Maximum Power \( P_{\text{max}} \) Transferable to the Load**
\( P_{\text{max}} \) is given by:
\[
P_{\text{max}} = \frac{{V_{\text{Thevenin}}}^2}{4 \times R_{\text{Thevenin}}}
\]
assume \( V_{\text{Thevenin}} \approx V_1 \)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Find the value of load resistor and maximum power using maximum power transfer theorem ?
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Introductory Circuit Analysis (13th Edition)](https://www.bartleby.com/isbn_cover_images/9780133923605/9780133923605_smallCoverImage.gif)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
![Delmar's Standard Textbook Of Electricity](https://www.bartleby.com/isbn_cover_images/9781337900348/9781337900348_smallCoverImage.jpg)
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
![Fundamentals of Electric Circuits](https://www.bartleby.com/isbn_cover_images/9780078028229/9780078028229_smallCoverImage.gif)
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
![Electric Circuits. (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134746968/9780134746968_smallCoverImage.gif)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
![Engineering Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780078028151/9780078028151_smallCoverImage.gif)
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,