Find polar coordinates (r, 0) of the point (-2√2, 2√2), where r <0 and 0 ≤6 a. 5 *(-2√2. ST) 3 b. 2π Ob (2√2. 2,7) 3 3 T -2.) 4 d. Od(4, 37) 4

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Finding Polar Coordinates: An Educational Tutorial**

To understand how to find polar coordinates \((r, \theta)\) for a given point in the Cartesian coordinate system, we will look at an example step-by-step.

Here is a problem statement along with possible answers:

---

**Problem:**
Find polar coordinates \((r, \theta)\) of the point \((-2\sqrt{2}, 2\sqrt{2})\), where \(r < 0\) and \(0 \leq \theta \leq 2\pi\).

**Options:**
a. \[\left(-2\sqrt{2}, \frac{5\pi}{3}\right)\]

b. \[\left(2\sqrt{2}, \frac{2\pi}{3}\right)\]

c. \[\left(-2, \frac{3\pi}{4}\right)\]

d. \[\left(4, \frac{3\pi}{4}\right)\]

e. \[\left(-4, \frac{7\pi}{4}\right)\]

---

Let's solve this step-by-step.

### Step 1: Cartesian to Polar Conversion
The given Cartesian coordinates are \((-2\sqrt{2}, 2\sqrt{2})\). To convert this to polar coordinates \((r, \theta)\), we use the formulas:
\[ r = \sqrt{x^2 + y^2} \]
\[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \]

### Step 2: Calculating \(r\)
Given \(x = -2\sqrt{2}\) and \(y = 2\sqrt{2}\):
\[ r = \sqrt{(-2\sqrt{2})^2 + (2\sqrt{2})^2} \]
\[ r = \sqrt{8 + 8} \]
\[ r = \sqrt{16} \]
\[ r = 4 \]

Since \(r < 0\) as per the problem, we have:
\[ r = -4 \]

### Step 3: Calculating \(\theta\)
\[ \theta = \tan^{-1}\left(\frac{2\sqrt{2}}{-2\sqrt{2}}\right) = \tan^{-1}(-1) \]

The value of \(\theta\) where \(\
Transcribed Image Text:**Finding Polar Coordinates: An Educational Tutorial** To understand how to find polar coordinates \((r, \theta)\) for a given point in the Cartesian coordinate system, we will look at an example step-by-step. Here is a problem statement along with possible answers: --- **Problem:** Find polar coordinates \((r, \theta)\) of the point \((-2\sqrt{2}, 2\sqrt{2})\), where \(r < 0\) and \(0 \leq \theta \leq 2\pi\). **Options:** a. \[\left(-2\sqrt{2}, \frac{5\pi}{3}\right)\] b. \[\left(2\sqrt{2}, \frac{2\pi}{3}\right)\] c. \[\left(-2, \frac{3\pi}{4}\right)\] d. \[\left(4, \frac{3\pi}{4}\right)\] e. \[\left(-4, \frac{7\pi}{4}\right)\] --- Let's solve this step-by-step. ### Step 1: Cartesian to Polar Conversion The given Cartesian coordinates are \((-2\sqrt{2}, 2\sqrt{2})\). To convert this to polar coordinates \((r, \theta)\), we use the formulas: \[ r = \sqrt{x^2 + y^2} \] \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] ### Step 2: Calculating \(r\) Given \(x = -2\sqrt{2}\) and \(y = 2\sqrt{2}\): \[ r = \sqrt{(-2\sqrt{2})^2 + (2\sqrt{2})^2} \] \[ r = \sqrt{8 + 8} \] \[ r = \sqrt{16} \] \[ r = 4 \] Since \(r < 0\) as per the problem, we have: \[ r = -4 \] ### Step 3: Calculating \(\theta\) \[ \theta = \tan^{-1}\left(\frac{2\sqrt{2}}{-2\sqrt{2}}\right) = \tan^{-1}(-1) \] The value of \(\theta\) where \(\
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning