Find N (t), T(t), aŢ, and añ: r(t) = t³i+ 8 cos tj + 6 sin tk; t = π

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please help find the parts of the function shown in the photo provided
### Vector Function Analysis

**Objective:**
Find \( N(t), T(t), a_T \), and \( a_N \) for the vector function defined as:
\[ \mathbf{r}(t) = t^3 \mathbf{i} + 8 \cos t \mathbf{j} + 6 \sin t \mathbf{k} \]

**Given:**
\[ t = \pi \]

### Steps to Determine the Components:

1. **Find the unit tangent vector \( \mathbf{T}(t) \)**:
    - The unit tangent vector \( \mathbf{T}(t) \) is given by:
    \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \]
  
2. **Find the unit normal vector \( \mathbf{N}(t) \)**:
    - The unit normal vector \( \mathbf{N}(t) \) is given by:
    \[ \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \]
  
3. **Find the tangential component of the acceleration \( a_T \)**:
    - The tangential component \( a_T \) is given by:
    \[ a_T = \mathbf{a}(t) \cdot \mathbf{T}(t) \]
  
4. **Find the normal component of the acceleration \( a_N \)**:
    - The normal component \( a_N \) is given by:
    \[ a_N = |\mathbf{a}(t) \cdot \mathbf{N}(t)| \]

**Note:** \( \mathbf{r}'(t) \) represents the first derivative and \( \mathbf{r}''(t) \) represents the second derivative of \( \mathbf{r}(t) \).

### Example Calculation:

Given the function:
\[ \mathbf{r}(t) = t^3 \mathbf{i} + 8 \cos t \mathbf{j} + 6 \sin t \mathbf{k} \]

At \( t = \pi \):
1. Compute \( \mathbf{r}'(t) \)
2. Compute \( \mathbf{r}''(t) \)
3. Use the derivatives to find \( \mathbf{T}(t) \) and \( \
Transcribed Image Text:### Vector Function Analysis **Objective:** Find \( N(t), T(t), a_T \), and \( a_N \) for the vector function defined as: \[ \mathbf{r}(t) = t^3 \mathbf{i} + 8 \cos t \mathbf{j} + 6 \sin t \mathbf{k} \] **Given:** \[ t = \pi \] ### Steps to Determine the Components: 1. **Find the unit tangent vector \( \mathbf{T}(t) \)**: - The unit tangent vector \( \mathbf{T}(t) \) is given by: \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{|\mathbf{r}'(t)|} \] 2. **Find the unit normal vector \( \mathbf{N}(t) \)**: - The unit normal vector \( \mathbf{N}(t) \) is given by: \[ \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{|\mathbf{T}'(t)|} \] 3. **Find the tangential component of the acceleration \( a_T \)**: - The tangential component \( a_T \) is given by: \[ a_T = \mathbf{a}(t) \cdot \mathbf{T}(t) \] 4. **Find the normal component of the acceleration \( a_N \)**: - The normal component \( a_N \) is given by: \[ a_N = |\mathbf{a}(t) \cdot \mathbf{N}(t)| \] **Note:** \( \mathbf{r}'(t) \) represents the first derivative and \( \mathbf{r}''(t) \) represents the second derivative of \( \mathbf{r}(t) \). ### Example Calculation: Given the function: \[ \mathbf{r}(t) = t^3 \mathbf{i} + 8 \cos t \mathbf{j} + 6 \sin t \mathbf{k} \] At \( t = \pi \): 1. Compute \( \mathbf{r}'(t) \) 2. Compute \( \mathbf{r}''(t) \) 3. Use the derivatives to find \( \mathbf{T}(t) \) and \( \
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,