Find lul, Ivl, 12ul, · 121.14 lu+vl, lu- vl, and lul - lvl. u = (1, -3), v = (-4,-4) lul=√10 |v1 = 4√2 12u1= 6.32456 x = 2√2 lu+v1 = ✓ √2 (√5 + 4) * √2 (√5-4) x lu-vl = lul- lvl = √2 (√5 4)
Find lul, Ivl, 12ul, · 121.14 lu+vl, lu- vl, and lul - lvl. u = (1, -3), v = (-4,-4) lul=√10 |v1 = 4√2 12u1= 6.32456 x = 2√2 lu+v1 = ✓ √2 (√5 + 4) * √2 (√5-4) x lu-vl = lul- lvl = √2 (√5 4)
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![**Title:** Understanding Vector Magnitude and Operations
In this exercise, we aim to find the magnitudes of given vectors and perform specific operations.
**Vectors:**
- \( \mathbf{u} = (1, -3) \)
- \( \mathbf{v} = (-4, -4) \)
**Tasks:**
Calculate the following:
- \( |\mathbf{u}| \)
- \( |\mathbf{v}| \)
- \( |2\mathbf{u}| \)
- \( \frac{1}{2}|\mathbf{v}| \)
- \( |\mathbf{u} + \mathbf{v}| \)
- \( |\mathbf{u} - \mathbf{v}| \)
- \( ||\mathbf{u}| - |\mathbf{v}|| \)
**Results:**
- \( |\mathbf{u}| = \sqrt{10} \) ✔️
- \( |\mathbf{v}| = 4\sqrt{2} \) ✔️
- \( |2\mathbf{u}| = 6.32456 \) ❌
- \( \frac{1}{2}|\mathbf{v}| = 2\sqrt{2} \) ✔️
- \( |\mathbf{u} + \mathbf{v}| = \sqrt{2(5+4)} \) ❌
- \( |\mathbf{u} - \mathbf{v}| = \sqrt{2(5-4)} \) ❌
- \( ||\mathbf{u}| - |\mathbf{v}|| = 2\sqrt{(5-4)} \) ✔️
**Explanation of the Mistakes:**
- The error in calculating \( |2\mathbf{u}| \) likely arises from a miscalculation. Ensure you double the components first and then find the magnitude.
- The mistakes in \( |\mathbf{u} + \mathbf{v}| \) and \( |\mathbf{u} - \mathbf{v}| \) show potential errors in summing or subtracting vectors and finding the magnitude thereafter.
This practice highlights common mistakes in handling vector operations and reinforces accurate computation.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F61d8af2b-7fdf-4a8e-a1bf-75f5ea698050%2Fb039be68-701f-4b5d-82b2-9ffd2a3c5f57%2Fns2uy88_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title:** Understanding Vector Magnitude and Operations
In this exercise, we aim to find the magnitudes of given vectors and perform specific operations.
**Vectors:**
- \( \mathbf{u} = (1, -3) \)
- \( \mathbf{v} = (-4, -4) \)
**Tasks:**
Calculate the following:
- \( |\mathbf{u}| \)
- \( |\mathbf{v}| \)
- \( |2\mathbf{u}| \)
- \( \frac{1}{2}|\mathbf{v}| \)
- \( |\mathbf{u} + \mathbf{v}| \)
- \( |\mathbf{u} - \mathbf{v}| \)
- \( ||\mathbf{u}| - |\mathbf{v}|| \)
**Results:**
- \( |\mathbf{u}| = \sqrt{10} \) ✔️
- \( |\mathbf{v}| = 4\sqrt{2} \) ✔️
- \( |2\mathbf{u}| = 6.32456 \) ❌
- \( \frac{1}{2}|\mathbf{v}| = 2\sqrt{2} \) ✔️
- \( |\mathbf{u} + \mathbf{v}| = \sqrt{2(5+4)} \) ❌
- \( |\mathbf{u} - \mathbf{v}| = \sqrt{2(5-4)} \) ❌
- \( ||\mathbf{u}| - |\mathbf{v}|| = 2\sqrt{(5-4)} \) ✔️
**Explanation of the Mistakes:**
- The error in calculating \( |2\mathbf{u}| \) likely arises from a miscalculation. Ensure you double the components first and then find the magnitude.
- The mistakes in \( |\mathbf{u} + \mathbf{v}| \) and \( |\mathbf{u} - \mathbf{v}| \) show potential errors in summing or subtracting vectors and finding the magnitude thereafter.
This practice highlights common mistakes in handling vector operations and reinforces accurate computation.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning