Find lul, Ivl, 12ul, · 121.14 lu+vl, lu- vl, and lul - lvl. u = (1, -3), v = (-4,-4) lul=√10 |v1 = 4√2 12u1= 6.32456 x = 2√2 lu+v1 = ✓ √2 (√5 + 4) * √2 (√5-4) x lu-vl = lul- lvl = √2 (√5 4)

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
Question
**Title:** Understanding Vector Magnitude and Operations

In this exercise, we aim to find the magnitudes of given vectors and perform specific operations.

**Vectors:**
- \( \mathbf{u} = (1, -3) \)
- \( \mathbf{v} = (-4, -4) \)

**Tasks:**
Calculate the following:
- \( |\mathbf{u}| \)
- \( |\mathbf{v}| \)
- \( |2\mathbf{u}| \)
- \( \frac{1}{2}|\mathbf{v}| \)
- \( |\mathbf{u} + \mathbf{v}| \)
- \( |\mathbf{u} - \mathbf{v}| \)
- \( ||\mathbf{u}| - |\mathbf{v}|| \)

**Results:**

- \( |\mathbf{u}| = \sqrt{10} \) ✔️
- \( |\mathbf{v}| = 4\sqrt{2} \) ✔️
- \( |2\mathbf{u}| = 6.32456 \) ❌
- \( \frac{1}{2}|\mathbf{v}| = 2\sqrt{2} \) ✔️
- \( |\mathbf{u} + \mathbf{v}| = \sqrt{2(5+4)} \) ❌
- \( |\mathbf{u} - \mathbf{v}| = \sqrt{2(5-4)} \) ❌
- \( ||\mathbf{u}| - |\mathbf{v}|| = 2\sqrt{(5-4)} \) ✔️

**Explanation of the Mistakes:**

- The error in calculating \( |2\mathbf{u}| \) likely arises from a miscalculation. Ensure you double the components first and then find the magnitude.
- The mistakes in \( |\mathbf{u} + \mathbf{v}| \) and \( |\mathbf{u} - \mathbf{v}| \) show potential errors in summing or subtracting vectors and finding the magnitude thereafter.

This practice highlights common mistakes in handling vector operations and reinforces accurate computation.
Transcribed Image Text:**Title:** Understanding Vector Magnitude and Operations In this exercise, we aim to find the magnitudes of given vectors and perform specific operations. **Vectors:** - \( \mathbf{u} = (1, -3) \) - \( \mathbf{v} = (-4, -4) \) **Tasks:** Calculate the following: - \( |\mathbf{u}| \) - \( |\mathbf{v}| \) - \( |2\mathbf{u}| \) - \( \frac{1}{2}|\mathbf{v}| \) - \( |\mathbf{u} + \mathbf{v}| \) - \( |\mathbf{u} - \mathbf{v}| \) - \( ||\mathbf{u}| - |\mathbf{v}|| \) **Results:** - \( |\mathbf{u}| = \sqrt{10} \) ✔️ - \( |\mathbf{v}| = 4\sqrt{2} \) ✔️ - \( |2\mathbf{u}| = 6.32456 \) ❌ - \( \frac{1}{2}|\mathbf{v}| = 2\sqrt{2} \) ✔️ - \( |\mathbf{u} + \mathbf{v}| = \sqrt{2(5+4)} \) ❌ - \( |\mathbf{u} - \mathbf{v}| = \sqrt{2(5-4)} \) ❌ - \( ||\mathbf{u}| - |\mathbf{v}|| = 2\sqrt{(5-4)} \) ✔️ **Explanation of the Mistakes:** - The error in calculating \( |2\mathbf{u}| \) likely arises from a miscalculation. Ensure you double the components first and then find the magnitude. - The mistakes in \( |\mathbf{u} + \mathbf{v}| \) and \( |\mathbf{u} - \mathbf{v}| \) show potential errors in summing or subtracting vectors and finding the magnitude thereafter. This practice highlights common mistakes in handling vector operations and reinforces accurate computation.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning