Find if y = e*² · 6* %3D dx

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem:**

Find \(\frac{dy}{dx}\) if \(y = e^{x^2} \cdot 6^x\).

**Solution:**

To find the derivative of the function \(y = e^{x^2} \cdot 6^x\), we will use the product rule and chain rule.

1. **Expression:** \(y = f(x) \cdot g(x)\), where \(f(x) = e^{x^2}\) and \(g(x) = 6^x\).

2. **Product Rule:** \(\frac{d}{dx}[f(x)\cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)\).

3. **Derivative of \(f(x) = e^{x^2}\):**
   - Use the chain rule: \(\frac{d}{dx}[e^{x^2}] = e^{x^2} \cdot \frac{d}{dx}[x^2] = e^{x^2} \cdot 2x\).

4. **Derivative of \(g(x) = 6^x\):**
   - Use the exponential rule: \(\frac{d}{dx}[6^x] = 6^x \cdot \ln(6)\).

5. **Apply the Product Rule:**
   - \(\frac{dy}{dx} = e^{x^2} \cdot 2x \cdot 6^x + e^{x^2} \cdot 6^x \cdot \ln(6)\).

6. **Simplify:**
   - \(\frac{dy}{dx} = e^{x^2} \cdot 6^x \cdot (2x + \ln(6))\).

Final expression for the derivative is:

\(\frac{dy}{dx} = e^{x^2} \cdot 6^x \cdot (2x + \ln(6))\).
Transcribed Image Text:**Problem:** Find \(\frac{dy}{dx}\) if \(y = e^{x^2} \cdot 6^x\). **Solution:** To find the derivative of the function \(y = e^{x^2} \cdot 6^x\), we will use the product rule and chain rule. 1. **Expression:** \(y = f(x) \cdot g(x)\), where \(f(x) = e^{x^2}\) and \(g(x) = 6^x\). 2. **Product Rule:** \(\frac{d}{dx}[f(x)\cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)\). 3. **Derivative of \(f(x) = e^{x^2}\):** - Use the chain rule: \(\frac{d}{dx}[e^{x^2}] = e^{x^2} \cdot \frac{d}{dx}[x^2] = e^{x^2} \cdot 2x\). 4. **Derivative of \(g(x) = 6^x\):** - Use the exponential rule: \(\frac{d}{dx}[6^x] = 6^x \cdot \ln(6)\). 5. **Apply the Product Rule:** - \(\frac{dy}{dx} = e^{x^2} \cdot 2x \cdot 6^x + e^{x^2} \cdot 6^x \cdot \ln(6)\). 6. **Simplify:** - \(\frac{dy}{dx} = e^{x^2} \cdot 6^x \cdot (2x + \ln(6))\). Final expression for the derivative is: \(\frac{dy}{dx} = e^{x^2} \cdot 6^x \cdot (2x + \ln(6))\).
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,