Find g, (0,3). ) Find g2 (0, 3). i) Find the equation of the tangent plane to the surface z = f(3 cos(ry), y + e*") at the point (0, 3). %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let z = g(r, y) = f(3 cos(ry), y+ ezv) provided that f(3, 4) = 6, f(3, 4) = 2, f2(3, 4) = 3.
i) Find g1 (0, 3).
ii) Find g2 (0, 3).
iii) Find the equation of the tangent plane to the surface z = f(3 cos(ry), y + e²") at the point (0, 3).
!!
Türkçe: f(3, 4) = 6, f1(3, 4) = 2, f2(3, 4) 3 olmak üzere z = g(r, y) = f(3 cos(cy), y +e²") olsun.
i) g1 (0, 3) değerini bulunuz.
i) g2 (0, 3) değerini bulunuz.
iii) z = f(3 cos(ry), y + ev) yüzeyine (0, 3) noktasında teğet düzlemin denklemini bulunuz.
O i) 9, i) 3, ii) 9x + 3y - z = 3
O i) 9, i) 3, iii) 9x - 3y - z = -9
O ) 9, m) 9, ii) 9x + 9y + z = 21
O ) 27, ii) 3, ii) 27x - 3y - z = -24
Oi)-18, ii) 9, i) -18x + 9y + z = -15
O i) 27, ii) -6, i) 27x -6y - z = -15
O ) -9, ii)-6, i) -9x -6y - z 3
O ) -18, ii) 12, iii) -18x + 12y - z = 3
Transcribed Image Text:Let z = g(r, y) = f(3 cos(ry), y+ ezv) provided that f(3, 4) = 6, f(3, 4) = 2, f2(3, 4) = 3. i) Find g1 (0, 3). ii) Find g2 (0, 3). iii) Find the equation of the tangent plane to the surface z = f(3 cos(ry), y + e²") at the point (0, 3). !! Türkçe: f(3, 4) = 6, f1(3, 4) = 2, f2(3, 4) 3 olmak üzere z = g(r, y) = f(3 cos(cy), y +e²") olsun. i) g1 (0, 3) değerini bulunuz. i) g2 (0, 3) değerini bulunuz. iii) z = f(3 cos(ry), y + ev) yüzeyine (0, 3) noktasında teğet düzlemin denklemini bulunuz. O i) 9, i) 3, ii) 9x + 3y - z = 3 O i) 9, i) 3, iii) 9x - 3y - z = -9 O ) 9, m) 9, ii) 9x + 9y + z = 21 O ) 27, ii) 3, ii) 27x - 3y - z = -24 Oi)-18, ii) 9, i) -18x + 9y + z = -15 O i) 27, ii) -6, i) 27x -6y - z = -15 O ) -9, ii)-6, i) -9x -6y - z 3 O ) -18, ii) 12, iii) -18x + 12y - z = 3
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,