Find functions g and h such that f(x) = g(h(x)). f(x) = e4x + 2 A. g(x) = 4x+2, h(x) = ex OB. g(x)= ex, h(x) = 4x+2 QC. g(x)= In x, h(x) = 4x+2 O D. g(x)=e4x, h(x)=x+2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Question:**

Find functions \( g \) and \( h \) such that \( f(x) = g(h(x)) \).

Given:
\[ f(x) = e^{4x + 2} \]

**Options:**

- **A.** \( g(x) = 4x + 2, \quad h(x) = e^x \)
- **B.** \( g(x) = e^x, \quad h(x) = 4x + 2 \)
- **C.** \( g(x) = \ln x, \quad h(x) = 4x + 2 \)
- **D.** \( g(x) = e^{4x}, \quad h(x) = x + 2 \)
Transcribed Image Text:**Question:** Find functions \( g \) and \( h \) such that \( f(x) = g(h(x)) \). Given: \[ f(x) = e^{4x + 2} \] **Options:** - **A.** \( g(x) = 4x + 2, \quad h(x) = e^x \) - **B.** \( g(x) = e^x, \quad h(x) = 4x + 2 \) - **C.** \( g(x) = \ln x, \quad h(x) = 4x + 2 \) - **D.** \( g(x) = e^{4x}, \quad h(x) = x + 2 \)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,