Find f[g(x)] and g[f(x)] for the given functions. 3 f(x) = -x³ -x+2, g(x) = 3x + 5 f[g(x)] = (Simplify your answer. Do not factor.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem:**

Find \( f[g(x)] \) and \( g[f(x)] \) for the given functions.

Given:
\[ f(x) = -x^3 + 2, \]
\[ g(x) = 3x + 5. \]

**Task:**

Calculate \( f[g(x)] = \) (Simplify your answer. Do not factor.) 

**Solution:**

To find \( f[g(x)] \), substitute \( g(x) = 3x + 5 \) into the function \( f(x) = -x^3 + 2 \).

So, \( f[g(x)] = f(3x + 5) \).

Replace \( x \) in \( f(x) \) with \( 3x + 5 \):
\[ f(3x + 5) = - (3x + 5)^3 + 2. \]

Now, expand \( (3x + 5)^3 \) and substitute back into the equation:
\[ (3x + 5)^3 = (3x+5)(3x+5)(3x+5). \]

Expand this expression step by step:
1. First two factors: \( (3x + 5)(3x + 5) = 9x^2 + 30x + 25. \)
2. Multiply the result by the third factor: 
   \[ (9x^2 + 30x + 25)(3x + 5) = 27x^3 + 45x^2 + 75x + 25x^2 + 150x + 125. \]

Combine like terms:
\[ = 27x^3 + 70x^2 + 225x + 125. \]

Substitute back to find \( f[g(x)] \):
\[ f(3x + 5) = - (27x^3 + 70x^2 + 225x + 125) + 2 \]
\[ = -27x^3 - 70x^2 - 225x - 125 + 2 \]
\[ = -27x^3 - 70x^2 - 225x - 123. \]

Thus, the simplified expression is:
\[ f[g(x)] = -27x^3 - 70x^2 - 225x - 123.
Transcribed Image Text:**Problem:** Find \( f[g(x)] \) and \( g[f(x)] \) for the given functions. Given: \[ f(x) = -x^3 + 2, \] \[ g(x) = 3x + 5. \] **Task:** Calculate \( f[g(x)] = \) (Simplify your answer. Do not factor.) **Solution:** To find \( f[g(x)] \), substitute \( g(x) = 3x + 5 \) into the function \( f(x) = -x^3 + 2 \). So, \( f[g(x)] = f(3x + 5) \). Replace \( x \) in \( f(x) \) with \( 3x + 5 \): \[ f(3x + 5) = - (3x + 5)^3 + 2. \] Now, expand \( (3x + 5)^3 \) and substitute back into the equation: \[ (3x + 5)^3 = (3x+5)(3x+5)(3x+5). \] Expand this expression step by step: 1. First two factors: \( (3x + 5)(3x + 5) = 9x^2 + 30x + 25. \) 2. Multiply the result by the third factor: \[ (9x^2 + 30x + 25)(3x + 5) = 27x^3 + 45x^2 + 75x + 25x^2 + 150x + 125. \] Combine like terms: \[ = 27x^3 + 70x^2 + 225x + 125. \] Substitute back to find \( f[g(x)] \): \[ f(3x + 5) = - (27x^3 + 70x^2 + 225x + 125) + 2 \] \[ = -27x^3 - 70x^2 - 225x - 125 + 2 \] \[ = -27x^3 - 70x^2 - 225x - 123. \] Thus, the simplified expression is: \[ f[g(x)] = -27x^3 - 70x^2 - 225x - 123.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,