Find f[g(x)] and g[f(x)] for the given functions. 10 f(x) = g(x)=x² X f[g(x)] =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
**Problem Statement:**

Find \( f[g(x)] \) and \( g[f(x)] \) for the given functions.

**Functions:**

\( f(x) = \frac{10}{x} \)

\( g(x) = x^2 \)

**Tasks:**

- Calculate \( f[g(x)] \).

- Calculate \( g[f(x)] \).

To solve these, substitute the expression for one function into the other.

**1. Calculate \( f[g(x)] \):**

\[ f[g(x)] = f(x^2) \]

\[ f(x^2) = \frac{10}{x^2} \]

**2. Calculate \( g[f(x)] \):**

\[ g[f(x)] = g\left(\frac{10}{x}\right) \]

\[ g\left(\frac{10}{x}\right) = \left(\frac{10}{x}\right)^2 \]

\[ = \frac{100}{x^2} \]

**Conclusion:**

- \( f[g(x)] = \frac{10}{x^2} \)

- \( g[f(x)] = \frac{100}{x^2} \)
Transcribed Image Text:**Problem Statement:** Find \( f[g(x)] \) and \( g[f(x)] \) for the given functions. **Functions:** \( f(x) = \frac{10}{x} \) \( g(x) = x^2 \) **Tasks:** - Calculate \( f[g(x)] \). - Calculate \( g[f(x)] \). To solve these, substitute the expression for one function into the other. **1. Calculate \( f[g(x)] \):** \[ f[g(x)] = f(x^2) \] \[ f(x^2) = \frac{10}{x^2} \] **2. Calculate \( g[f(x)] \):** \[ g[f(x)] = g\left(\frac{10}{x}\right) \] \[ g\left(\frac{10}{x}\right) = \left(\frac{10}{x}\right)^2 \] \[ = \frac{100}{x^2} \] **Conclusion:** - \( f[g(x)] = \frac{10}{x^2} \) - \( g[f(x)] = \frac{100}{x^2} \)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,