Find fe(), the Fourier series expansion of * € [-L, 0), * € [0, L], where k and L are positive constants.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find f(x), the Fourier series expansion of
0
* € [-L, 0),
=
{kº * € [0, 1],
where & and I are positive constants.
kL
kL
+)
2
22
²72 ((-1)^²+1 -1) cos(")
kl
fr(a) = k +
(k (-1)^ cos (¹7) +
4
kL
kL
=
- Σ( ²2 ((-1)² - 1) cos(-
(**) +
123T
R=1
kL
NTT
fr(2) = k + +Ë ( 22((-1)-1) cos(
4
22² 72
R=1
kL
= 1
kL
2
+ 2 (2)
(²72((−1)² + 1) cos (²) +
R=1
None of the options displayed.
kL
kL
MTX
fr(x) =
(-1)+¹ sin(
2
727T
fr(x) =
- ((-1) ² - 1) sin (7²)
:-)
127T
R=1
kL
fr(*) =
=
- (-1)²+¹ cos (7²)
12²772
L
R=1
+
R=1
00
iM8
((-1)+1-1) sin()
nπ
(-1)+1 sin(-
kL
727T20
+ (-1)+¹ sin(-
727T
L
kL
(-1) sin(7²))
123T
Transcribed Image Text:Find f(x), the Fourier series expansion of 0 * € [-L, 0), = {kº * € [0, 1], where & and I are positive constants. kL kL +) 2 22 ²72 ((-1)^²+1 -1) cos(") kl fr(a) = k + (k (-1)^ cos (¹7) + 4 kL kL = - Σ( ²2 ((-1)² - 1) cos(- (**) + 123T R=1 kL NTT fr(2) = k + +Ë ( 22((-1)-1) cos( 4 22² 72 R=1 kL = 1 kL 2 + 2 (2) (²72((−1)² + 1) cos (²) + R=1 None of the options displayed. kL kL MTX fr(x) = (-1)+¹ sin( 2 727T fr(x) = - ((-1) ² - 1) sin (7²) :-) 127T R=1 kL fr(*) = = - (-1)²+¹ cos (7²) 12²772 L R=1 + R=1 00 iM8 ((-1)+1-1) sin() nπ (-1)+1 sin(- kL 727T20 + (-1)+¹ sin(- 727T L kL (-1) sin(7²)) 123T
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,