Find f. f(x) = f"(x) = x-2, x > 0, f(1) = 0, f(3) = 0

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question

COMPLETLY SOLVE PLEASE!!!!

**Problem Statement:**

Find the function \( f \).

Given:

\[ f''(x) = x^{-2}, \, x > 0, \, f(1) = 0, \, f(3) = 0 \]

**Solution:**

To find \( f(x) \), we first need to integrate the second derivative \( f''(x) = x^{-2} \) twice to obtain \( f(x) \).

1. **First Integration:**

   Integrate \( f''(x) = x^{-2} \) to find \( f'(x) \).

   \[
   f'(x) = \int x^{-2} \, dx = -x^{-1} + C_1 = -\frac{1}{x} + C_1
   \]

   where \( C_1 \) is the constant of integration.

2. **Second Integration:**

   Integrate \( f'(x) = -\frac{1}{x} + C_1 \) to find \( f(x) \).

   \[
   f(x) = \int \left(-\frac{1}{x} + C_1\right) dx = -\ln|x| + C_1 x + C_2
   \]

   where \( C_2 \) is another constant of integration.

3. **Applying Initial Conditions:**

   Use the conditions \( f(1) = 0 \) and \( f(3) = 0 \) to solve for \( C_1 \) and \( C_2 \).

   - For \( f(1) = 0 \):
     \[
     -\ln|1| + C_1 \cdot 1 + C_2 = 0 \quad \Rightarrow \quad 0 + C_1 + C_2 = 0 \quad \Rightarrow \quad C_1 + C_2 = 0
     \]

   - For \( f(3) = 0 \):
     \[
     -\ln|3| + C_1 \cdot 3 + C_2 = 0 \quad \Rightarrow \quad -\ln 3 + 3C_1 + C_2 = 0
     \]

   Solving the system of linear equations:
   
   \[
   \begin{
Transcribed Image Text:**Problem Statement:** Find the function \( f \). Given: \[ f''(x) = x^{-2}, \, x > 0, \, f(1) = 0, \, f(3) = 0 \] **Solution:** To find \( f(x) \), we first need to integrate the second derivative \( f''(x) = x^{-2} \) twice to obtain \( f(x) \). 1. **First Integration:** Integrate \( f''(x) = x^{-2} \) to find \( f'(x) \). \[ f'(x) = \int x^{-2} \, dx = -x^{-1} + C_1 = -\frac{1}{x} + C_1 \] where \( C_1 \) is the constant of integration. 2. **Second Integration:** Integrate \( f'(x) = -\frac{1}{x} + C_1 \) to find \( f(x) \). \[ f(x) = \int \left(-\frac{1}{x} + C_1\right) dx = -\ln|x| + C_1 x + C_2 \] where \( C_2 \) is another constant of integration. 3. **Applying Initial Conditions:** Use the conditions \( f(1) = 0 \) and \( f(3) = 0 \) to solve for \( C_1 \) and \( C_2 \). - For \( f(1) = 0 \): \[ -\ln|1| + C_1 \cdot 1 + C_2 = 0 \quad \Rightarrow \quad 0 + C_1 + C_2 = 0 \quad \Rightarrow \quad C_1 + C_2 = 0 \] - For \( f(3) = 0 \): \[ -\ln|3| + C_1 \cdot 3 + C_2 = 0 \quad \Rightarrow \quad -\ln 3 + 3C_1 + C_2 = 0 \] Solving the system of linear equations: \[ \begin{
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning