Find f such that f'(x) = 8x² + 3x-4 and f(0) = 9.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement:
Find \( f \) such that \( f'(x) = 8x^2 + 3x - 4 \) and \( f(0) = 9 \).

**Solution:**

To find \( f(x) \) given its derivative, we need to integrate the function \( f'(x) \).

1. Write the given derivative:
\[ f'(x) = 8x^2 + 3x - 4 \]

2. Integrate with respect to \( x \):
\[
f(x) = \int (8x^2 + 3x - 4) \, dx
\]

3. Perform the integration term by term:
\[
f(x) = \int 8x^2 \, dx + \int 3x \, dx - \int 4 \, dx
\]

4. Evaluate each integral:
\[
\int 8x^2 \, dx = 8 \cdot \frac{x^3}{3} = \frac{8}{3} x^3
\]
\[
\int 3x \, dx = 3 \cdot \frac{x^2}{2} = \frac{3}{2} x^2
\]
\[
\int 4 \, dx = 4x
\]

Combine these results:
\[
f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + C
\]

5. Use the initial condition \( f(0) = 9 \) to solve for \( C \):
\[
f(0) = \frac{8}{3}(0)^3 + \frac{3}{2}(0)^2 - 4(0) + C = 9
\]
\[
C = 9
\]

Therefore, the function \( f(x) \) is:
\[
f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + 9
\]

**Final Answer:**
\[
f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + 9
\]

### Explanation:
This process involved integrating the given derivative and then using the
Transcribed Image Text:### Problem Statement: Find \( f \) such that \( f'(x) = 8x^2 + 3x - 4 \) and \( f(0) = 9 \). **Solution:** To find \( f(x) \) given its derivative, we need to integrate the function \( f'(x) \). 1. Write the given derivative: \[ f'(x) = 8x^2 + 3x - 4 \] 2. Integrate with respect to \( x \): \[ f(x) = \int (8x^2 + 3x - 4) \, dx \] 3. Perform the integration term by term: \[ f(x) = \int 8x^2 \, dx + \int 3x \, dx - \int 4 \, dx \] 4. Evaluate each integral: \[ \int 8x^2 \, dx = 8 \cdot \frac{x^3}{3} = \frac{8}{3} x^3 \] \[ \int 3x \, dx = 3 \cdot \frac{x^2}{2} = \frac{3}{2} x^2 \] \[ \int 4 \, dx = 4x \] Combine these results: \[ f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + C \] 5. Use the initial condition \( f(0) = 9 \) to solve for \( C \): \[ f(0) = \frac{8}{3}(0)^3 + \frac{3}{2}(0)^2 - 4(0) + C = 9 \] \[ C = 9 \] Therefore, the function \( f(x) \) is: \[ f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + 9 \] **Final Answer:** \[ f(x) = \frac{8}{3} x^3 + \frac{3}{2} x^2 - 4x + 9 \] ### Explanation: This process involved integrating the given derivative and then using the
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning