Find f if f"(t) = 2e¹ + 3 sin(t), f(0) = −4, ƒ(ñ) = 9. f(t) = 2e^t-3sint-6

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem:**

Find \( f \) if \( f''(t) = 2e^t + 3 \sin(t) \), \( f(0) = -4 \), \( f(\pi) = 9 \).

\[ f(t) = \text{[Input Box]} \]

**Solution:**

To find the function \( f(t) \) given the double derivative \( f''(t) = 2e^t + 3 \sin(t) \) and the initial conditions \( f(0) = -4 \), and \( f(\pi) = 9 \):

1. **Integrate** \( f''(t) \) to find the first derivative \( f'(t) \):
   
   \[
   f''(t) = 2e^t + 3 \sin(t)
   \]
   
   Integrate:
   
   \[
   f'(t) = 2e^t - 3 \cos(t) + C_1
   \]
   
2. **Integrate** \( f'(t) \) to find \( f(t) \):
   
   \[
   f'(t) = 2e^t - 3 \cos(t) + C_1
   \]
   
   Integrate:
   
   \[
   f(t) = 2e^t - 3 \sin(t) + C_1 t + C_2
   \]

3. **Determine** the constants \( C_1 \) and \( C_2 \) using the initial conditions \( f(0) = -4 \) and \( f(\pi) = 9 \):
   
   For \( t = 0 \):
   
   \[
   f(0) = 2e^0 - 3 \sin(0) + C_1 \cdot 0 + C_2 = -4
   \]
   
   \[
   2 + 0 + 0 + C_2 = -4
   \]
   
   \[
   C_2 = -6
   \]
   
   For \( t = \pi \):
   
   \[
   f(\pi) = 2e^\pi - 3 \sin(\pi) + C_1 \cdot \pi + C_2 = 9
   \]
   
   \
Transcribed Image Text:**Problem:** Find \( f \) if \( f''(t) = 2e^t + 3 \sin(t) \), \( f(0) = -4 \), \( f(\pi) = 9 \). \[ f(t) = \text{[Input Box]} \] **Solution:** To find the function \( f(t) \) given the double derivative \( f''(t) = 2e^t + 3 \sin(t) \) and the initial conditions \( f(0) = -4 \), and \( f(\pi) = 9 \): 1. **Integrate** \( f''(t) \) to find the first derivative \( f'(t) \): \[ f''(t) = 2e^t + 3 \sin(t) \] Integrate: \[ f'(t) = 2e^t - 3 \cos(t) + C_1 \] 2. **Integrate** \( f'(t) \) to find \( f(t) \): \[ f'(t) = 2e^t - 3 \cos(t) + C_1 \] Integrate: \[ f(t) = 2e^t - 3 \sin(t) + C_1 t + C_2 \] 3. **Determine** the constants \( C_1 \) and \( C_2 \) using the initial conditions \( f(0) = -4 \) and \( f(\pi) = 9 \): For \( t = 0 \): \[ f(0) = 2e^0 - 3 \sin(0) + C_1 \cdot 0 + C_2 = -4 \] \[ 2 + 0 + 0 + C_2 = -4 \] \[ C_2 = -6 \] For \( t = \pi \): \[ f(\pi) = 2e^\pi - 3 \sin(\pi) + C_1 \cdot \pi + C_2 = 9 \] \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning