Find dy using implicit differentiation dx iclx = 10

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Topic: Implicit Differentiation Exercise**

**Problem:**

Find \(\frac{dy}{dx}\) using implicit differentiation.

Given:  
\[ x \cdot \sin(y) = 1 \]  
\[ x = 10 \]

**Solution Steps:**

1. Differentiate both sides of the equation \(x \cdot \sin(y) = 1\) with respect to \(x\):

   \[ \frac{d}{dx}(x \cdot \sin(y)) = \frac{d}{dx}(1) \]

2. Use the product rule for the left side:

   \[ \frac{d}{dx}(x \cdot \sin(y)) = \sin(y) + x \cdot \frac{d}{dx}(\sin(y)) \]

3. Apply the chain rule to \(\frac{d}{dx}(\sin(y))\):

   \[ \frac{d}{dx}(\sin(y)) = \cos(y) \cdot \frac{dy}{dx} \]

4. Substitute back:

   \[ \sin(y) + x \cdot \cos(y) \cdot \frac{dy}{dx} = 0 \]

5. Rearrange to solve for \(\frac{dy}{dx}\):

   \[ x \cdot \cos(y) \cdot \frac{dy}{dx} = -\sin(y) \]

   \[ \frac{dy}{dx} = -\frac{\sin(y)}{x \cdot \cos(y)} \]

6. Substitute \(x = 10\) to find the specific value:

   \[ \frac{dy}{dx} = -\frac{\sin(y)}{10 \cdot \cos(y)} \] 

   (The specific solution depends on further information about \(y\).)
Transcribed Image Text:**Topic: Implicit Differentiation Exercise** **Problem:** Find \(\frac{dy}{dx}\) using implicit differentiation. Given: \[ x \cdot \sin(y) = 1 \] \[ x = 10 \] **Solution Steps:** 1. Differentiate both sides of the equation \(x \cdot \sin(y) = 1\) with respect to \(x\): \[ \frac{d}{dx}(x \cdot \sin(y)) = \frac{d}{dx}(1) \] 2. Use the product rule for the left side: \[ \frac{d}{dx}(x \cdot \sin(y)) = \sin(y) + x \cdot \frac{d}{dx}(\sin(y)) \] 3. Apply the chain rule to \(\frac{d}{dx}(\sin(y))\): \[ \frac{d}{dx}(\sin(y)) = \cos(y) \cdot \frac{dy}{dx} \] 4. Substitute back: \[ \sin(y) + x \cdot \cos(y) \cdot \frac{dy}{dx} = 0 \] 5. Rearrange to solve for \(\frac{dy}{dx}\): \[ x \cdot \cos(y) \cdot \frac{dy}{dx} = -\sin(y) \] \[ \frac{dy}{dx} = -\frac{\sin(y)}{x \cdot \cos(y)} \] 6. Substitute \(x = 10\) to find the specific value: \[ \frac{dy}{dx} = -\frac{\sin(y)}{10 \cdot \cos(y)} \] (The specific solution depends on further information about \(y\).)
Expert Solution
Step 1

xy=10

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning