Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![To find the derivative \(\frac{dy}{dx}\) of the function \(y = \frac{x^3 + 4x + 7}{x^2 + 1}\), we will use the quotient rule. The quotient rule states that if you have a function in the form \(\frac{u}{v}\), then its derivative is given by:
\[
\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
\]
For this specific function:
- Let \(u = x^3 + 4x + 7\)
- Let \(v = x^2 + 1\)
First, find the derivatives \(\frac{du}{dx}\) and \(\frac{dv}{dx}\):
\[
\frac{du}{dx} = 3x^2 + 4
\]
\[
\frac{dv}{dx} = 2x
\]
Now apply the quotient rule:
\[
\frac{dy}{dx} = \frac{(x^2 + 1)(3x^2 + 4) - (x^3 + 4x + 7)(2x)}{(x^2 + 1)^2}
\]
Simplify the expression to find the final derivative:
\[
\frac{dy}{dx} = \frac{(3x^4 + 4x^2 + 3x^2 + 4) - (2x^4 + 8x^2 + 14x)}{(x^2 + 1)^2}
\]
\[
= \frac{3x^4 + 7x^2 + 4 - 2x^4 - 8x^2 - 14x}{(x^2 + 1)^2}
\]
\[
= \frac{x^4 - x^2 - 14x + 4}{(x^2 + 1)^2}
\]
Thus, the derivative is:
\[
\frac{dy}{dx} = \frac{x^4 - x^2 - 14x + 4}{(x^2 + 1)^2}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3e51674d-3d29-4cb4-94ad-529601d10286%2Fcffce628-7eb1-4d7d-bdae-86440f7a846d%2F2ueqbvx_processed.png&w=3840&q=75)
Transcribed Image Text:To find the derivative \(\frac{dy}{dx}\) of the function \(y = \frac{x^3 + 4x + 7}{x^2 + 1}\), we will use the quotient rule. The quotient rule states that if you have a function in the form \(\frac{u}{v}\), then its derivative is given by:
\[
\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}
\]
For this specific function:
- Let \(u = x^3 + 4x + 7\)
- Let \(v = x^2 + 1\)
First, find the derivatives \(\frac{du}{dx}\) and \(\frac{dv}{dx}\):
\[
\frac{du}{dx} = 3x^2 + 4
\]
\[
\frac{dv}{dx} = 2x
\]
Now apply the quotient rule:
\[
\frac{dy}{dx} = \frac{(x^2 + 1)(3x^2 + 4) - (x^3 + 4x + 7)(2x)}{(x^2 + 1)^2}
\]
Simplify the expression to find the final derivative:
\[
\frac{dy}{dx} = \frac{(3x^4 + 4x^2 + 3x^2 + 4) - (2x^4 + 8x^2 + 14x)}{(x^2 + 1)^2}
\]
\[
= \frac{3x^4 + 7x^2 + 4 - 2x^4 - 8x^2 - 14x}{(x^2 + 1)^2}
\]
\[
= \frac{x^4 - x^2 - 14x + 4}{(x^2 + 1)^2}
\]
Thus, the derivative is:
\[
\frac{dy}{dx} = \frac{x^4 - x^2 - 14x + 4}{(x^2 + 1)^2}
\]
Expert Solution

Step 1
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning