Find dy dx at the point (0, 2) if y² +e™ = 4.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Implicit Differentiation Problem

**Find \(\frac{dy}{dx}\) at the point (0, 2) if \(y^2 + e^{xy} = 4\).**

**Steps to solve:**

1. **Given Equation**: \(y^2 + e^{xy} = 4\)

2. **Differentiate both sides with respect to \(x\)**:
   \[ \frac{d}{dx}(y^2) + \frac{d}{dx}(e^{xy}) = \frac{d}{dx}(4) \]

3. **Apply the chain rule and product rule**:
   \[ 2y \frac{dy}{dx} + e^{xy} \left( y + x \frac{dy}{dx} \right) = 0 \]

4. **Substitute \(x=0\) and \(y=2\)** into the differentiated equation**:
   \[ 2(2) \frac{dy}{dx} + e^{0\cdot2} \left(2 + 0 \cdot \frac{dy}{dx}\right) = 0 \]
   Simplifying the equation above, we get:
   \[ 4 \frac{dy}{dx} + 1 \cdot 2 = 0 \]

5. **Solve for \(\frac{dy}{dx}\)**:
   \[ 4 \frac{dy}{dx} + 2 = 0 \]
   \[ 4 \frac{dy}{dx} = -2 \]
   \[ \frac{dy}{dx} = -\frac{2}{4} \]
   \[ \frac{dy}{dx} = -\frac{1}{2} \]

So, \(\frac{dy}{dx} = -\frac{1}{2}\) at the point (0, 2).
Transcribed Image Text:### Implicit Differentiation Problem **Find \(\frac{dy}{dx}\) at the point (0, 2) if \(y^2 + e^{xy} = 4\).** **Steps to solve:** 1. **Given Equation**: \(y^2 + e^{xy} = 4\) 2. **Differentiate both sides with respect to \(x\)**: \[ \frac{d}{dx}(y^2) + \frac{d}{dx}(e^{xy}) = \frac{d}{dx}(4) \] 3. **Apply the chain rule and product rule**: \[ 2y \frac{dy}{dx} + e^{xy} \left( y + x \frac{dy}{dx} \right) = 0 \] 4. **Substitute \(x=0\) and \(y=2\)** into the differentiated equation**: \[ 2(2) \frac{dy}{dx} + e^{0\cdot2} \left(2 + 0 \cdot \frac{dy}{dx}\right) = 0 \] Simplifying the equation above, we get: \[ 4 \frac{dy}{dx} + 1 \cdot 2 = 0 \] 5. **Solve for \(\frac{dy}{dx}\)**: \[ 4 \frac{dy}{dx} + 2 = 0 \] \[ 4 \frac{dy}{dx} = -2 \] \[ \frac{dy}{dx} = -\frac{2}{4} \] \[ \frac{dy}{dx} = -\frac{1}{2} \] So, \(\frac{dy}{dx} = -\frac{1}{2}\) at the point (0, 2).
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning