Find dt y = 31(21? – 5) $ dy dt

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement**

Find \(\frac{dy}{dt}\).

Given:
\[ y = 3t(2t^2 - 5)^5 \]

**Solution Steps**

1. **Differentiate \( y \) with respect to \( t \).**

You are given the function \( y = 3t(2t^2 - 5)^5 \). To find \(\frac{dy}{dt}\), apply the product rule and the chain rule.

2. **Using the Product Rule:**

The product rule states that if you have a function \( y = u(t) \cdot v(t) \), then the derivative \( \frac{dy}{dt} = u'(t)v(t) + u(t)v'(t) \).

- Here, let: 
  - \( u(t) = 3t \)
  - \( v(t) = (2t^2 - 5)^5 \)

3. **Differentiate \( u(t) \) and \( v(t) \):**

- \( \frac{du}{dt} = 3 \)

- For \( v(t) \), apply the chain rule:
  \[
  \frac{dv}{dt} = 5(2t^2 - 5)^4 \cdot \frac{d}{dt}(2t^2 - 5)
  \]

- Differentiate the inside function \( 2t^2 - 5 \):
  \[
  \frac{d}{dt}(2t^2 - 5) = 4t
  \]

- Therefore, 
  \[
  \frac{dv}{dt} = 5(2t^2 - 5)^4 \times 4t = 20t(2t^2 - 5)^4
  \]

4. **Substitute in the Product Rule:**

\[
\frac{dy}{dt} = 3(2t^2 - 5)^5 + 3t \cdot 20t(2t^2 - 5)^4
\]

5. **Simplify the Expression:**

\[
\frac{dy}{dt} = 3(2t^2 - 5)^5 + 60t^2(2t^2 - 5)^4
\]

This expression gives the rate of change of \( y \) with
Transcribed Image Text:**Problem Statement** Find \(\frac{dy}{dt}\). Given: \[ y = 3t(2t^2 - 5)^5 \] **Solution Steps** 1. **Differentiate \( y \) with respect to \( t \).** You are given the function \( y = 3t(2t^2 - 5)^5 \). To find \(\frac{dy}{dt}\), apply the product rule and the chain rule. 2. **Using the Product Rule:** The product rule states that if you have a function \( y = u(t) \cdot v(t) \), then the derivative \( \frac{dy}{dt} = u'(t)v(t) + u(t)v'(t) \). - Here, let: - \( u(t) = 3t \) - \( v(t) = (2t^2 - 5)^5 \) 3. **Differentiate \( u(t) \) and \( v(t) \):** - \( \frac{du}{dt} = 3 \) - For \( v(t) \), apply the chain rule: \[ \frac{dv}{dt} = 5(2t^2 - 5)^4 \cdot \frac{d}{dt}(2t^2 - 5) \] - Differentiate the inside function \( 2t^2 - 5 \): \[ \frac{d}{dt}(2t^2 - 5) = 4t \] - Therefore, \[ \frac{dv}{dt} = 5(2t^2 - 5)^4 \times 4t = 20t(2t^2 - 5)^4 \] 4. **Substitute in the Product Rule:** \[ \frac{dy}{dt} = 3(2t^2 - 5)^5 + 3t \cdot 20t(2t^2 - 5)^4 \] 5. **Simplify the Expression:** \[ \frac{dy}{dt} = 3(2t^2 - 5)^5 + 60t^2(2t^2 - 5)^4 \] This expression gives the rate of change of \( y \) with
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning