Find BA. A = BA= -1 - 1 -6-2 B = -2 - 3 -4 -1

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
### Matrix Multiplication: Finding BA

**Objective:**
Calculate the product of matrices B and A (denoted as BA).

**Given Matrices:**

Matrix \( A \):

\[ A = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \]

Matrix \( B \):

\[ B = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \]


**Task:**

To find the matrix product \( BA \).

### Solution Steps:

1. **Matrix Dimensions:** Confirm that the matrices can be multiplied. 

Matrix \( B \) is a 2x2 matrix, and Matrix \( A \) is also a 2x2 matrix. Since the number of columns in \( B \) (2) is equal to the number of rows in \( A \) (2), the matrices can be multiplied.

2. **Multiplication Process:** Use the formula for matrix multiplication. For matrices \( B = [b_{ij}] \) and \( A = [a_{ij}] \), the element at \( (i, j) \) of the product \( BA \) is calculated as:

\[ 
(BA)_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj}
\]

**Calculation:**

Let's denote:
- \( B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \)
- \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \)

The elements of the resulting matrix \( BA \) will be:
- \( (BA)_{11} = (-2 \cdot -1) + (-3 \cdot -6) \)
- \( (BA)_{12} = (-2 \cdot -1) + (-3 \cdot -2) \)
- \( (BA)_{21} = (-4 \cdot -1) + (-1
Transcribed Image Text:### Matrix Multiplication: Finding BA **Objective:** Calculate the product of matrices B and A (denoted as BA). **Given Matrices:** Matrix \( A \): \[ A = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \] Matrix \( B \): \[ B = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \] **Task:** To find the matrix product \( BA \). ### Solution Steps: 1. **Matrix Dimensions:** Confirm that the matrices can be multiplied. Matrix \( B \) is a 2x2 matrix, and Matrix \( A \) is also a 2x2 matrix. Since the number of columns in \( B \) (2) is equal to the number of rows in \( A \) (2), the matrices can be multiplied. 2. **Multiplication Process:** Use the formula for matrix multiplication. For matrices \( B = [b_{ij}] \) and \( A = [a_{ij}] \), the element at \( (i, j) \) of the product \( BA \) is calculated as: \[ (BA)_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj} \] **Calculation:** Let's denote: - \( B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \) - \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \) The elements of the resulting matrix \( BA \) will be: - \( (BA)_{11} = (-2 \cdot -1) + (-3 \cdot -6) \) - \( (BA)_{12} = (-2 \cdot -1) + (-3 \cdot -2) \) - \( (BA)_{21} = (-4 \cdot -1) + (-1
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education