Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![### Matrix Multiplication: Finding BA
**Objective:**
Calculate the product of matrices B and A (denoted as BA).
**Given Matrices:**
Matrix \( A \):
\[ A = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \]
Matrix \( B \):
\[ B = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \]
**Task:**
To find the matrix product \( BA \).
### Solution Steps:
1. **Matrix Dimensions:** Confirm that the matrices can be multiplied.
Matrix \( B \) is a 2x2 matrix, and Matrix \( A \) is also a 2x2 matrix. Since the number of columns in \( B \) (2) is equal to the number of rows in \( A \) (2), the matrices can be multiplied.
2. **Multiplication Process:** Use the formula for matrix multiplication. For matrices \( B = [b_{ij}] \) and \( A = [a_{ij}] \), the element at \( (i, j) \) of the product \( BA \) is calculated as:
\[
(BA)_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj}
\]
**Calculation:**
Let's denote:
- \( B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \)
- \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \)
The elements of the resulting matrix \( BA \) will be:
- \( (BA)_{11} = (-2 \cdot -1) + (-3 \cdot -6) \)
- \( (BA)_{12} = (-2 \cdot -1) + (-3 \cdot -2) \)
- \( (BA)_{21} = (-4 \cdot -1) + (-1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F006a35a3-e559-4cc9-aa53-746bb30a70e8%2Fa7e9f317-2e1e-4031-a404-4a03f6c88e7a%2Fesvfxva_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Matrix Multiplication: Finding BA
**Objective:**
Calculate the product of matrices B and A (denoted as BA).
**Given Matrices:**
Matrix \( A \):
\[ A = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \]
Matrix \( B \):
\[ B = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \]
**Task:**
To find the matrix product \( BA \).
### Solution Steps:
1. **Matrix Dimensions:** Confirm that the matrices can be multiplied.
Matrix \( B \) is a 2x2 matrix, and Matrix \( A \) is also a 2x2 matrix. Since the number of columns in \( B \) (2) is equal to the number of rows in \( A \) (2), the matrices can be multiplied.
2. **Multiplication Process:** Use the formula for matrix multiplication. For matrices \( B = [b_{ij}] \) and \( A = [a_{ij}] \), the element at \( (i, j) \) of the product \( BA \) is calculated as:
\[
(BA)_{ij} = \sum_{k=1}^{n} b_{ik} \cdot a_{kj}
\]
**Calculation:**
Let's denote:
- \( B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} -2 & -3 \\ -4 & -1 \end{bmatrix} \)
- \( A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ -6 & -2 \end{bmatrix} \)
The elements of the resulting matrix \( BA \) will be:
- \( (BA)_{11} = (-2 \cdot -1) + (-3 \cdot -6) \)
- \( (BA)_{12} = (-2 \cdot -1) + (-3 \cdot -2) \)
- \( (BA)_{21} = (-4 \cdot -1) + (-1
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps

Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education