Find BA. A= BA= 0 -:] 7 -1 -3 0 -3 -5 -4

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
**Matrix Multiplication: Find BA**

Consider two matrices A and B defined as follows:
\[ 
A = \begin{pmatrix} 
7 & 0 \\ 
-1 & -3 
\end{pmatrix} 
\]
\[
 B = \begin{pmatrix} 
0 & -3 \\ 
-5 & -4 
\end{pmatrix} 
\]

To find the product \( BA \), use matrix multiplication rules where the element in the \(i\)-th row and \(j\)-th column of the resulting matrix is the dot product of the \(i\)-th row of matrix B and the \(j\)-th column of matrix A.

**Matrix A:**

\[ 
\begin{pmatrix} 
7 & 0 \\ 
-1 & -3 
\end{pmatrix} 
\]

**Matrix B:**

\[ 
\begin{pmatrix} 
0 & -3 \\ 
-5 & -4 
\end{pmatrix} 
\]

### Step-by-Step Calculation
1. **First row, first column**: \( (0 \cdot 7) + (-3 \cdot -1) = 0 + 3 = 3 \)
2. **First row, second column**: \( (0 \cdot 0) + (-3 \cdot -3) = 0 + 9 = 9 \)
3. **Second row, first column**: \( (-5 \cdot 7) + (-4 \cdot -1) = -35 + 4 = -31 \)
4. **Second row, second column**: \( (-5 \cdot 0) + (-4 \cdot -3) = 0 + 12 = 12 \)

**Resulting Matrix BA:**

\[ 
\begin{pmatrix} 
3 & 9 \\ 
-31 & 12 
\end{pmatrix} 
\]

So, 

\[ 
BA = \begin{pmatrix} 
3 & 9 \\ 
-31 & 12 
\end{pmatrix} 
\]
Transcribed Image Text:**Matrix Multiplication: Find BA** Consider two matrices A and B defined as follows: \[ A = \begin{pmatrix} 7 & 0 \\ -1 & -3 \end{pmatrix} \] \[ B = \begin{pmatrix} 0 & -3 \\ -5 & -4 \end{pmatrix} \] To find the product \( BA \), use matrix multiplication rules where the element in the \(i\)-th row and \(j\)-th column of the resulting matrix is the dot product of the \(i\)-th row of matrix B and the \(j\)-th column of matrix A. **Matrix A:** \[ \begin{pmatrix} 7 & 0 \\ -1 & -3 \end{pmatrix} \] **Matrix B:** \[ \begin{pmatrix} 0 & -3 \\ -5 & -4 \end{pmatrix} \] ### Step-by-Step Calculation 1. **First row, first column**: \( (0 \cdot 7) + (-3 \cdot -1) = 0 + 3 = 3 \) 2. **First row, second column**: \( (0 \cdot 0) + (-3 \cdot -3) = 0 + 9 = 9 \) 3. **Second row, first column**: \( (-5 \cdot 7) + (-4 \cdot -1) = -35 + 4 = -31 \) 4. **Second row, second column**: \( (-5 \cdot 0) + (-4 \cdot -3) = 0 + 12 = 12 \) **Resulting Matrix BA:** \[ \begin{pmatrix} 3 & 9 \\ -31 & 12 \end{pmatrix} \] So, \[ BA = \begin{pmatrix} 3 & 9 \\ -31 & 12 \end{pmatrix} \]
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education