Find at æ = 3 if y=-5x² - 2 and da dt dy dt = 4.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem: Differentiating Implicit Functions**

Consider the function \( y = -5x^2 - 2 \) with \(\frac{dy}{dt} = 4\). We want to find \(\frac{dx}{dt}\) when \( x = 3 \).

### Steps:
1. Differentiate the given function implicitly with respect to \( t \).
2. Plug in the known values to solve for \(\frac{dx}{dt}\).

### Solution:
Given:
\[ y = -5x^2 - 2 \]

Differentiate both sides with respect to \( t \):
\[ \frac{dy}{dt} = \frac{d}{dt}(-5x^2 - 2) \]
\[ \frac{dy}{dt} = -10x \cdot \frac{dx}{dt} \]

We know \(\frac{dy}{dt} = 4\), so substitute these values:
\[ 4 = -10x \cdot \frac{dx}{dt} \]

Now, solve for \(\frac{dx}{dt}\) when \( x = 3 \):
\[ 4 = -10(3) \cdot \frac{dx}{dt} \]
\[ 4 = -30 \cdot \frac{dx}{dt} \]
\[ \frac{dx}{dt} = -\frac{4}{30} \]
\[ \frac{dx}{dt} = -\frac{2}{15} \]

### Conclusion:
The value of \(\frac{dx}{dt}\) at \( x = 3 \) is \(-\frac{2}{15}\).
Transcribed Image Text:**Problem: Differentiating Implicit Functions** Consider the function \( y = -5x^2 - 2 \) with \(\frac{dy}{dt} = 4\). We want to find \(\frac{dx}{dt}\) when \( x = 3 \). ### Steps: 1. Differentiate the given function implicitly with respect to \( t \). 2. Plug in the known values to solve for \(\frac{dx}{dt}\). ### Solution: Given: \[ y = -5x^2 - 2 \] Differentiate both sides with respect to \( t \): \[ \frac{dy}{dt} = \frac{d}{dt}(-5x^2 - 2) \] \[ \frac{dy}{dt} = -10x \cdot \frac{dx}{dt} \] We know \(\frac{dy}{dt} = 4\), so substitute these values: \[ 4 = -10x \cdot \frac{dx}{dt} \] Now, solve for \(\frac{dx}{dt}\) when \( x = 3 \): \[ 4 = -10(3) \cdot \frac{dx}{dt} \] \[ 4 = -30 \cdot \frac{dx}{dt} \] \[ \frac{dx}{dt} = -\frac{4}{30} \] \[ \frac{dx}{dt} = -\frac{2}{15} \] ### Conclusion: The value of \(\frac{dx}{dt}\) at \( x = 3 \) is \(-\frac{2}{15}\).
Expert Solution
Step 1: Requirement of the question

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning