Find and test all critical points of f(x,y): f (x₁y) = x²y + xy²-y₁ 7f= <2xy + y²₁, x² + 2xy-1), २५ 2x+2y 2 H(e) = [2 x + 2y (22x [2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Find and test all critical points of \( f(x, y) \).

**Function and Calculations:**

The function is defined as:

\[ f(x, y) = x^2 y + xy^2 - y \]

The gradient of the function \( \nabla f \) is given by:

\[ \nabla f = \langle 2xy + y^2, x^2 + 2xy - 1 \rangle \]

The Hessian matrix \( H(f) \) is:

\[ H(f) = \begin{bmatrix} 2y & 2x + 2y \\ 2x + 2y & 2x \end{bmatrix} \]

**Explanation:**

1. **Function:** The function \( f(x, y) \) is a polynomial involving both \( x \) and \( y \).
   
2. **Gradient (\( \nabla f \)):** The gradient gives the vector of first partial derivatives of the function, which are essential for finding critical points where the gradient equals zero.

3. **Hessian (\( H(f) \)):** The Hessian matrix consists of the second partial derivatives, which help determine the nature of the critical points (i.e., whether they are minima, maxima, or saddle points).
Transcribed Image Text:**Problem Statement:** Find and test all critical points of \( f(x, y) \). **Function and Calculations:** The function is defined as: \[ f(x, y) = x^2 y + xy^2 - y \] The gradient of the function \( \nabla f \) is given by: \[ \nabla f = \langle 2xy + y^2, x^2 + 2xy - 1 \rangle \] The Hessian matrix \( H(f) \) is: \[ H(f) = \begin{bmatrix} 2y & 2x + 2y \\ 2x + 2y & 2x \end{bmatrix} \] **Explanation:** 1. **Function:** The function \( f(x, y) \) is a polynomial involving both \( x \) and \( y \). 2. **Gradient (\( \nabla f \)):** The gradient gives the vector of first partial derivatives of the function, which are essential for finding critical points where the gradient equals zero. 3. **Hessian (\( H(f) \)):** The Hessian matrix consists of the second partial derivatives, which help determine the nature of the critical points (i.e., whether they are minima, maxima, or saddle points).
Expert Solution
Step 1: Question Description

Find and test all critical points of f open parentheses x comma space y close parentheses:

f open parentheses x comma y close parentheses equals x squared y plus x y squared minus y,    nabla f equals less than 2 x y plus y squared comma space x squared plus 2 x y minus 1 greater thanH open parentheses f close parentheses equals open square brackets table row cell 2 y end cell cell 2 x plus 2 y end cell row cell 2 x plus 2 y end cell cell 2 x end cell end table close square brackets.

steps

Step by step

Solved in 4 steps with 26 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,