Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem:**
Find and simplify the expression:
\[
\frac{f(x+h) - f(x)}{h}
\]
for each function.
**Given Function:**
\[
f(x) = \frac{1}{x}
\]
**Solution:**
To solve this, you will substitute \( f(x) \) and \( f(x+h) \) into the difference quotient and simplify.
1. Find \( f(x+h) \):
\[
f(x+h) = \frac{1}{x+h}
\]
2. Substitute \( f(x+h) \) and \( f(x) \) into the expression:
\[
\frac{\frac{1}{x+h} - \frac{1}{x}}{h}
\]
3. Simplify the expression:
- Find a common denominator for the fractions in the numerator:
\[
\frac{x - (x+h)}{(x+h)x} = \frac{-h}{(x+h)x}
\]
- Divide by \( h \):
\[
\frac{-h}{h(x+h)x} = \frac{-1}{(x+h)x}
\]
Thus, the simplified form of the expression is:
\[
\frac{-1}{(x+h)x}
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F25c04d59-ed01-4203-b4a0-5c8469f37968%2Ffc5f083a-a819-4195-8681-9a366d13cb4e%2F9yrfvsv_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem:**
Find and simplify the expression:
\[
\frac{f(x+h) - f(x)}{h}
\]
for each function.
**Given Function:**
\[
f(x) = \frac{1}{x}
\]
**Solution:**
To solve this, you will substitute \( f(x) \) and \( f(x+h) \) into the difference quotient and simplify.
1. Find \( f(x+h) \):
\[
f(x+h) = \frac{1}{x+h}
\]
2. Substitute \( f(x+h) \) and \( f(x) \) into the expression:
\[
\frac{\frac{1}{x+h} - \frac{1}{x}}{h}
\]
3. Simplify the expression:
- Find a common denominator for the fractions in the numerator:
\[
\frac{x - (x+h)}{(x+h)x} = \frac{-h}{(x+h)x}
\]
- Divide by \( h \):
\[
\frac{-h}{h(x+h)x} = \frac{-1}{(x+h)x}
\]
Thus, the simplified form of the expression is:
\[
\frac{-1}{(x+h)x}
\]
![**Task:**
Find and simplify the expression
\[
\frac{f(x+h) - f(x)}{h}
\]
for each function.
**Given Function:**
\( f(x) = 3x^2 - 4x - 5 \)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F25c04d59-ed01-4203-b4a0-5c8469f37968%2Ffc5f083a-a819-4195-8681-9a366d13cb4e%2F3oyyad_processed.png&w=3840&q=75)
Transcribed Image Text:**Task:**
Find and simplify the expression
\[
\frac{f(x+h) - f(x)}{h}
\]
for each function.
**Given Function:**
\( f(x) = 3x^2 - 4x - 5 \)
Expert Solution

Step 1
"As per our policy we can answer only first question so please repost the other question as next question."
Given that,
f(x) =
We have to find the value of
Step by step
Solved in 2 steps

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning