Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem Statement**
Find \(\frac{\partial f}{\partial x}\) and \(\frac{\partial f}{\partial y}\) for \(f(x, y) = 7(2x - 4y + 9)^8\).
**Explanation**
This problem requires finding the partial derivatives of the function \(f(x, y)\).
- \(\frac{\partial f}{\partial x}\) represents the rate of change of the function \(f\) with respect to the variable \(x\).
- \(\frac{\partial f}{\partial y}\) represents the rate of change of the function \(f\) with respect to the variable \(y\).
The function given is \(f(x, y) = 7(2x - 4y + 9)^8\). You will apply the chain rule and the power rule to differentiate with respect to each variable.
**Steps for Calculating Partial Derivatives**
1. **Differentiation with respect to \(x\):**
- Differentiate the inner function \(u = 2x - 4y + 9\) with respect to \(x\) to get \(\frac{\partial u}{\partial x} = 2\).
- Use the chain rule: \(\frac{\partial f}{\partial x} = 7 \cdot 8(2x - 4y + 9)^7 \cdot 2\).
2. **Differentiation with respect to \(y\):**
- Differentiate the inner function \(u = 2x - 4y + 9\) with respect to \(y\) to get \(\frac{\partial u}{\partial y} = -4\).
- Use the chain rule: \(\frac{\partial f}{\partial y} = 7 \cdot 8(2x - 4y + 9)^7 \cdot (-4)\).
These steps outline how to find each partial derivative for the given function.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa8713e9b-73ac-4e4f-a322-df330d573c40%2Ff4ab93eb-b3bf-4476-87b7-a3202193564a%2F8fzdn7_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement**
Find \(\frac{\partial f}{\partial x}\) and \(\frac{\partial f}{\partial y}\) for \(f(x, y) = 7(2x - 4y + 9)^8\).
**Explanation**
This problem requires finding the partial derivatives of the function \(f(x, y)\).
- \(\frac{\partial f}{\partial x}\) represents the rate of change of the function \(f\) with respect to the variable \(x\).
- \(\frac{\partial f}{\partial y}\) represents the rate of change of the function \(f\) with respect to the variable \(y\).
The function given is \(f(x, y) = 7(2x - 4y + 9)^8\). You will apply the chain rule and the power rule to differentiate with respect to each variable.
**Steps for Calculating Partial Derivatives**
1. **Differentiation with respect to \(x\):**
- Differentiate the inner function \(u = 2x - 4y + 9\) with respect to \(x\) to get \(\frac{\partial u}{\partial x} = 2\).
- Use the chain rule: \(\frac{\partial f}{\partial x} = 7 \cdot 8(2x - 4y + 9)^7 \cdot 2\).
2. **Differentiation with respect to \(y\):**
- Differentiate the inner function \(u = 2x - 4y + 9\) with respect to \(y\) to get \(\frac{\partial u}{\partial y} = -4\).
- Use the chain rule: \(\frac{\partial f}{\partial y} = 7 \cdot 8(2x - 4y + 9)^7 \cdot (-4)\).
These steps outline how to find each partial derivative for the given function.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning