Find and classify the critical points of z = (x – 4x) (y 4.x Local maximums: DNE Local minimums: DNE Saddle points: DNE For each classification, enter a list of ordered pairs (x, y) where the r are no points for a classification, enter DNE,

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find and classify the critical points of z = (22 = 4x) (y² 6y)
Local maximums: DNE
Local minimums: DNE
Saddle points: DNE
For each classification, enter a list of ordered pairs (x, y) where the max/mi
are no points for a classification, enter DNE.
Check Answer
Transcribed Image Text:Find and classify the critical points of z = (22 = 4x) (y² 6y) Local maximums: DNE Local minimums: DNE Saddle points: DNE For each classification, enter a list of ordered pairs (x, y) where the max/mi are no points for a classification, enter DNE. Check Answer
Expert Solution
Step 1

Given function is z=x24xy26y

Let z=fx,y

Hence, fx,y=x24xy26y

Differentiate partially fx,y=x24xy26y with respect to x

fx=xx24xy26y=2x4y26y

Hence, fx=2x4y26y

Differentiate partially fx,y=x24xy26y with respect to y

fy=yx24xy26y=x24x2y6

Hence, fy=x24x2y6

Now, for critical point equate fx=0 and fy=0

Hence, 2x4y26y=0.......1

And x24x2y6=0.......2

Since, 2x4y26y=0

2x4y26y=0x=2,y=0 and y=6

Substitute x=2 in equation (2) we get

y=3

Hence, critical point is 2,3.

Substitute y=0 in equation (2) we get

x=0 and x=4

Hence, critical point is 0,0 and 4,0.

Substitute y=6 in equation (2) we get

x=0 and x=4

Hence, critical point is 0,6 and 4,6.

steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,