Find an LU decomposition (factorization) of 9. 8 A = 5 3 That is, write A = LU where L is a lower triangular matrix with ones in the diagonal, and U is an uppe triangular matrix. Use the LU factorization to solve the system 8. 91 10 -5 3 x2 11 A = LU = 18 云=
Find an LU decomposition (factorization) of 9. 8 A = 5 3 That is, write A = LU where L is a lower triangular matrix with ones in the diagonal, and U is an uppe triangular matrix. Use the LU factorization to solve the system 8. 91 10 -5 3 x2 11 A = LU = 18 云=
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![### LU Decomposition (Factorization) - Educational Content
#### LU Decomposition
LU decomposition involves factoring a matrix \( A \) into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \).
#### Problem Statement
Find an LU decomposition (factorization) of:
\[
A = \begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix}
\]
That is, write \( A = LU \) where \( L \) is a lower triangular matrix with ones in the diagonal, and \( U \) is an upper triangular matrix.
#### Application of LU Decomposition
Use the LU factorization to solve the system:
\[
\begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
10 \\
11
\end{bmatrix}
\]
#### Step-by-Step Solution Process
1. **LU Factorization:**
\[
A = LU = \begin{bmatrix}
1 & 0 \\
l_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{11} & u_{12} \\
0 & u_{22}
\end{bmatrix}
\]
2. **Construct matrices \( L \) and \( U \) such that:**
\[
\begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
l_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{11} & u_{12} \\
0 & u_{22}
\end{bmatrix}
\]
- From the first row: \(u_{11} = 8\) and \( u_{12} = 9 \).
- From the element \( -5 = l_{21} \times 8 \) we get \( l_{21} = -\frac{5}{8}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F088399be-9a43-44b3-a949-bec438b8f98b%2F015674c8-0a31-4bdc-851f-7f489ae8f156%2F0s78v9i_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### LU Decomposition (Factorization) - Educational Content
#### LU Decomposition
LU decomposition involves factoring a matrix \( A \) into the product of a lower triangular matrix \( L \) and an upper triangular matrix \( U \).
#### Problem Statement
Find an LU decomposition (factorization) of:
\[
A = \begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix}
\]
That is, write \( A = LU \) where \( L \) is a lower triangular matrix with ones in the diagonal, and \( U \) is an upper triangular matrix.
#### Application of LU Decomposition
Use the LU factorization to solve the system:
\[
\begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
10 \\
11
\end{bmatrix}
\]
#### Step-by-Step Solution Process
1. **LU Factorization:**
\[
A = LU = \begin{bmatrix}
1 & 0 \\
l_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{11} & u_{12} \\
0 & u_{22}
\end{bmatrix}
\]
2. **Construct matrices \( L \) and \( U \) such that:**
\[
\begin{bmatrix}
8 & 9 \\
-5 & 3
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
l_{21} & 1
\end{bmatrix}
\begin{bmatrix}
u_{11} & u_{12} \\
0 & u_{22}
\end{bmatrix}
\]
- From the first row: \(u_{11} = 8\) and \( u_{12} = 9 \).
- From the element \( -5 = l_{21} \times 8 \) we get \( l_{21} = -\frac{5}{8}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)