Find an inverse for the linear congruence 9x = 15 (mod 23) by using the Euclidean algorithm to compute the gcd(9, 23) and performing backward substitution. Then find a solution for the linear congruence.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Title: Solving Linear Congruence Using the Euclidean Algorithm

In this example, we aim to find an inverse for the linear congruence \(9x \equiv 15 \pmod{23}\) by using the Euclidean algorithm. We start by computing the gcd(9, 23) and then perform backward substitution. Finally, a solution will be determined for the linear congruence.

1. **Compute the gcd(9, 23) using the Euclidean algorithm:**
   - \(23 = 2 \cdot 9 + 5 \)
   - \(9 = 1 \cdot 5 + 4 \)
   - \(5 = 1 \cdot 4 + 1 \)
   - \(4 = 4 \cdot 1 + 0 \)

   Therefore, \(\text{gcd}(9, 23) = 1\).

2. **Backward substitution to express gcd as a linear combination:**
   - \(1 = 5 - 1 \cdot 4\)
   - \(4 = 9 - 1 \cdot 5\)
     Substituting \(4\),
   - \(1 = 5 - 1 \cdot (9 - 1 \cdot 5)\)
   - \(1 = 2 \cdot 5 - 1 \cdot 9\)
     Substituting \(5\),
   - \(5 = 23 - 2 \cdot 9\)
     Substituting \(5\),
   - \(1 = 2 \cdot (23 - 2 \cdot 9) - 1 \cdot 9\)
   - \(1 = 2 \cdot 23 - 5 \cdot 9\)

3. **Modular Inverse:**
   Find the inverse of \(9\) modulo \(23\), which can be seen from the linear combination as:
   - \(-5 \equiv 18 \pmod{23}\)

4. **Solution to the original congruence:**
   - Multiplying both sides by the inverse \(18\):
     \(x \equiv 15 \cdot 18 \pmod{23}\)
   - Calculate \(15 \cdot 18 \pmod{23}\)
   - \(15 \cdot
Transcribed Image Text:### Title: Solving Linear Congruence Using the Euclidean Algorithm In this example, we aim to find an inverse for the linear congruence \(9x \equiv 15 \pmod{23}\) by using the Euclidean algorithm. We start by computing the gcd(9, 23) and then perform backward substitution. Finally, a solution will be determined for the linear congruence. 1. **Compute the gcd(9, 23) using the Euclidean algorithm:** - \(23 = 2 \cdot 9 + 5 \) - \(9 = 1 \cdot 5 + 4 \) - \(5 = 1 \cdot 4 + 1 \) - \(4 = 4 \cdot 1 + 0 \) Therefore, \(\text{gcd}(9, 23) = 1\). 2. **Backward substitution to express gcd as a linear combination:** - \(1 = 5 - 1 \cdot 4\) - \(4 = 9 - 1 \cdot 5\) Substituting \(4\), - \(1 = 5 - 1 \cdot (9 - 1 \cdot 5)\) - \(1 = 2 \cdot 5 - 1 \cdot 9\) Substituting \(5\), - \(5 = 23 - 2 \cdot 9\) Substituting \(5\), - \(1 = 2 \cdot (23 - 2 \cdot 9) - 1 \cdot 9\) - \(1 = 2 \cdot 23 - 5 \cdot 9\) 3. **Modular Inverse:** Find the inverse of \(9\) modulo \(23\), which can be seen from the linear combination as: - \(-5 \equiv 18 \pmod{23}\) 4. **Solution to the original congruence:** - Multiplying both sides by the inverse \(18\): \(x \equiv 15 \cdot 18 \pmod{23}\) - Calculate \(15 \cdot 18 \pmod{23}\) - \(15 \cdot
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,