Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
See attached, please. Thank you.
![**Problem:**
Find an equation of the tangent line to the curve at the given point.
\[
y = \frac{1 + \sin(x)}{\cos(x)}
\]
at the point \((\pi, -1)\).
**Explanation:**
To find the equation of the tangent line at a specific point on a curve, we need to follow these steps:
1. **Differentiate the Function:**
Calculate the derivative of the function \(y = \frac{1 + \sin(x)}{\cos(x)}\) to determine the slope of the tangent line at any point.
2. **Evaluate the Derivative at the Given Point:**
Substitute \(x = \pi\) into the derivative to find the slope of the tangent line at \((\pi, -1)\).
3. **Use the Point-Slope Form:**
With the slope from step 2 and the given point, use the point-slope form equation \(y - y_1 = m(x - x_1)\) to write the equation of the tangent line, where \(m\) is the slope and \((x_1, y_1)\) is the given point \((\pi, -1)\).
No graphs or diagrams are provided in this text.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9fe49cee-acc8-403b-8d12-20ec3514f583%2Ff9e86930-585d-43c1-ad0c-b325f8ce1a5c%2F0lyslpf_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem:**
Find an equation of the tangent line to the curve at the given point.
\[
y = \frac{1 + \sin(x)}{\cos(x)}
\]
at the point \((\pi, -1)\).
**Explanation:**
To find the equation of the tangent line at a specific point on a curve, we need to follow these steps:
1. **Differentiate the Function:**
Calculate the derivative of the function \(y = \frac{1 + \sin(x)}{\cos(x)}\) to determine the slope of the tangent line at any point.
2. **Evaluate the Derivative at the Given Point:**
Substitute \(x = \pi\) into the derivative to find the slope of the tangent line at \((\pi, -1)\).
3. **Use the Point-Slope Form:**
With the slope from step 2 and the given point, use the point-slope form equation \(y - y_1 = m(x - x_1)\) to write the equation of the tangent line, where \(m\) is the slope and \((x_1, y_1)\) is the given point \((\pi, -1)\).
No graphs or diagrams are provided in this text.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning