Find an equation of the normal line to the surface given implicitly by z = sin(xy) at the point (5,-1, -1³). Lütfen birini seçin: T √√3 -ty=-1+t, z = -- - t.teR 2 2 bz = -¹/t₁y = −1+ t.2 = √3 t. - t.teR 2 x = -1/2+²t₁y = -t, z = -1 t.teR √3 dz=-t₁y=+=--t.teR 3 √3 ²z=-1-t₁y = -1 +2=-1-tte R 2 >2 √3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Find an equation of the normal line to the surface given implicitly by z = sin(ry) at the point (,-1, -).
%3D
Lütfen birini seçin:
a.
= -t. y = -1+ t,z =
-t,te R
b.
I.
V3
-t.teR
-. y = -1+t.z=
CI = - +t.y =; -t.z= -1
V3
t,t e R
d.I =
6 - t. y = - +
+t.2 = -
V3
t,te R
z = --t.y = -1+t.2= -1 -
V3
-t,teR
2= - -
Transcribed Image Text:Find an equation of the normal line to the surface given implicitly by z = sin(ry) at the point (,-1, -). %3D Lütfen birini seçin: a. = -t. y = -1+ t,z = -t,te R b. I. V3 -t.teR -. y = -1+t.z= CI = - +t.y =; -t.z= -1 V3 t,t e R d.I = 6 - t. y = - + +t.2 = - V3 t,te R z = --t.y = -1+t.2= -1 - V3 -t,teR 2= - -
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,