Find an arc length parametrization r₁(s) of the curve r(t) = r₁(s) = (e' sin(t), e' cos(t), 12e'). (Give your answer using component form or standard basis vectors. Express numbers in exact form. Use symbolic notation and fractions where needed.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I need help with this question

### Arc Length Parametrization Problem

**Problem Statement:**
Find an arc length parametrization \(\mathbf{r_1}(s)\) of the curve \(\mathbf{r}(t) = \langle e^t \sin(t), e^t \cos(t), 12e^t \rangle\).

(Give your answer using component form or standard basis vectors. Express numbers in exact form. Use symbolic notation and fractions where needed.)

\[ \mathbf{r_1}(s) = \]

**Explanation:**
To find the arc length parameter \(s\), we need to compute the length of the curve from the starting point up to a parameter value \(t\). This involves integrating the magnitude of the derivative of \(\mathbf{r}(t)\) with respect to \(t\).

1. **Compute \(\mathbf{r}'(t)\) (the derivative of \(\mathbf{r}(t)\))**:
   \[ \mathbf{r}(t) = \langle e^t \sin(t), e^t \cos(t), 12e^t \rangle \]
   \[ \mathbf{r}'(t) = \left\langle \frac{d}{dt}\left(e^t \sin(t)\right), \frac{d}{dt}\left(e^t \cos(t)\right), \frac{d}{dt}\left(12e^t\right) \right\rangle \]

2. **Compute each derivative**:
   \[ \frac{d}{dt}\left(e^t \sin(t)\right) = e^t \sin(t) + e^t \cos(t) \]
   \[ \frac{d}{dt}\left(e^t \cos(t)\right) = e^t \cos(t) - e^t \sin(t) \]
   \[ \frac{d}{dt}\left(12e^t\right) = 12e^t \]

   Thus,
   \[ \mathbf{r}'(t) = \langle e^t(\sin(t) + \cos(t)), e^t(\cos(t) - \sin(t)), 12e^t \rangle \]

3. **Find the magnitude of \(\mathbf{r}'(t)\)**:
   \[ \|\mathbf{r}'(
Transcribed Image Text:### Arc Length Parametrization Problem **Problem Statement:** Find an arc length parametrization \(\mathbf{r_1}(s)\) of the curve \(\mathbf{r}(t) = \langle e^t \sin(t), e^t \cos(t), 12e^t \rangle\). (Give your answer using component form or standard basis vectors. Express numbers in exact form. Use symbolic notation and fractions where needed.) \[ \mathbf{r_1}(s) = \] **Explanation:** To find the arc length parameter \(s\), we need to compute the length of the curve from the starting point up to a parameter value \(t\). This involves integrating the magnitude of the derivative of \(\mathbf{r}(t)\) with respect to \(t\). 1. **Compute \(\mathbf{r}'(t)\) (the derivative of \(\mathbf{r}(t)\))**: \[ \mathbf{r}(t) = \langle e^t \sin(t), e^t \cos(t), 12e^t \rangle \] \[ \mathbf{r}'(t) = \left\langle \frac{d}{dt}\left(e^t \sin(t)\right), \frac{d}{dt}\left(e^t \cos(t)\right), \frac{d}{dt}\left(12e^t\right) \right\rangle \] 2. **Compute each derivative**: \[ \frac{d}{dt}\left(e^t \sin(t)\right) = e^t \sin(t) + e^t \cos(t) \] \[ \frac{d}{dt}\left(e^t \cos(t)\right) = e^t \cos(t) - e^t \sin(t) \] \[ \frac{d}{dt}\left(12e^t\right) = 12e^t \] Thus, \[ \mathbf{r}'(t) = \langle e^t(\sin(t) + \cos(t)), e^t(\cos(t) - \sin(t)), 12e^t \rangle \] 3. **Find the magnitude of \(\mathbf{r}'(t)\)**: \[ \|\mathbf{r}'(
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,