Find a value of k so that k= Find a value of k so that k || ekt is a solution to ' help (numbers) [-2]e = [1 ekt is a solution to a' x' = help (numbers) 7 2 -4 1 7 27 -4 1 18 ស x.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

7. Ordinary Differential Equations

Find a value of \( k \) so that 

\[
\begin{bmatrix} 
1 \\ 
-1 
\end{bmatrix} 
e^{kt}
\]

is a solution to 

\[
\vec{x}' = 
\begin{bmatrix} 
7 & 2 \\ 
-4 & 1 
\end{bmatrix} 
\vec{x}.
\]

\( k = \) [                    ] help (numbers)

---

Find a value of \( k \) so that 

\[
\begin{bmatrix} 
1 \\ 
-2 
\end{bmatrix} 
e^{kt}
\]

is a solution to 

\[
\vec{x}' = 
\begin{bmatrix} 
7 & 2 \\ 
-4 & 1 
\end{bmatrix} 
\vec{x}.
\]

\( k = \) [                    ] help (numbers)
Transcribed Image Text:Find a value of \( k \) so that \[ \begin{bmatrix} 1 \\ -1 \end{bmatrix} e^{kt} \] is a solution to \[ \vec{x}' = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} \vec{x}. \] \( k = \) [                    ] help (numbers) --- Find a value of \( k \) so that \[ \begin{bmatrix} 1 \\ -2 \end{bmatrix} e^{kt} \] is a solution to \[ \vec{x}' = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix} \vec{x}. \] \( k = \) [                    ] help (numbers)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,