Find (a) the orthogonal projection of b onto Col A and (b) a least-squares solution of Ax = b. A= 14 -18 14 b= 10 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Given:

\[ 
A = \begin{bmatrix}
1 & 4 \\
-1 & 8 \\
1 & 4 
\end{bmatrix}, \quad 
b = \begin{bmatrix}
10 \\
-4 \\
4 
\end{bmatrix}
\]

Find:
(a) The orthogonal projection of vector \( \mathbf{b} \) onto the column space of matrix \( \mathbf{A} \).
(b) The least-squares solution of the equation \( \mathbf{A} \mathbf{x} = \mathbf{b} \).

**Solution Explanation:**

To solve these parts, follow these steps:

### (a) Orthogonal Projection of \( \mathbf{b} \) onto Col \( \mathbf{A} \)

1. **Formulate the Projection Formula:**

   The orthogonal projection of vector \( \mathbf{b} \) onto the column space of \( \mathbf{A} \) (denoted as \( \text{Col} \mathbf{A} \)) can be represented as:

   \[
   \mathbf{P}_{\mathbf{b}} = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}
   \]

2. **Calculate \( \mathbf{A}^T \):**

   \[
   \mathbf{A}^T = \begin{bmatrix}
   1 & -1 & 1 \\
   4 & 8 & 4 
   \end{bmatrix}
   \]

3. **Compute \( \mathbf{A}^T \mathbf{A} \):**

   \[
   \mathbf{A}^T \mathbf{A} = \begin{bmatrix}
   1 & -1 & 1 \\
   4 & 8 & 4 
   \end{bmatrix}
   \begin{bmatrix}
   1 & 4 \\
   -1 & 8 \\
   1 & 4 
   \end{bmatrix} = \begin{bmatrix}
   3 & 6 \\
   6 & 96 
   \end{bmatrix}
   \]

4. **Calculate the Inverse of \( \mathbf{A}^T \
Transcribed Image Text:**Problem Statement:** Given: \[ A = \begin{bmatrix} 1 & 4 \\ -1 & 8 \\ 1 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 10 \\ -4 \\ 4 \end{bmatrix} \] Find: (a) The orthogonal projection of vector \( \mathbf{b} \) onto the column space of matrix \( \mathbf{A} \). (b) The least-squares solution of the equation \( \mathbf{A} \mathbf{x} = \mathbf{b} \). **Solution Explanation:** To solve these parts, follow these steps: ### (a) Orthogonal Projection of \( \mathbf{b} \) onto Col \( \mathbf{A} \) 1. **Formulate the Projection Formula:** The orthogonal projection of vector \( \mathbf{b} \) onto the column space of \( \mathbf{A} \) (denoted as \( \text{Col} \mathbf{A} \)) can be represented as: \[ \mathbf{P}_{\mathbf{b}} = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b} \] 2. **Calculate \( \mathbf{A}^T \):** \[ \mathbf{A}^T = \begin{bmatrix} 1 & -1 & 1 \\ 4 & 8 & 4 \end{bmatrix} \] 3. **Compute \( \mathbf{A}^T \mathbf{A} \):** \[ \mathbf{A}^T \mathbf{A} = \begin{bmatrix} 1 & -1 & 1 \\ 4 & 8 & 4 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ -1 & 8 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 96 \end{bmatrix} \] 4. **Calculate the Inverse of \( \mathbf{A}^T \
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,