Find a solution to the IVP y" + 4y' + 4y = 0 if y(0) = 1 anc y'(0) = 3. 1400
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement:**
Find a solution to the Initial Value Problem (IVP) for the differential equation:
\( y'' + 4y' + 4y = 0 \),
subject to the initial conditions:
\( y(0) = 1 \) and \( y'(0) = 3 \).
**Explanation:**
To solve this differential equation with the given initial conditions, we follow these steps:
1. **Solve the Characteristic Equation**:
- For the differential equation \( y'' + 4y' + 4y = 0 \), we first find the characteristic equation, which is \( r^2 + 4r + 4 = 0 \).
- Factor the characteristic equation: \( (r + 2)^2 = 0 \).
- This implies \( r = -2 \) is a repeated root.
2. **General Solution**:
- Because there is a repeated root, the general solution takes the form:
\[
y(t) = C_1 e^{-2t} + C_2 t e^{-2t}
\]
3. **Apply Initial Conditions**:
- Use \( y(0) = 1 \):
\[
1 = C_1 e^{0} + C_2 \cdot 0 \cdot e^{0} = C_1
\]
Thus, \( C_1 = 1 \).
- Use \( y'(0) = 3 \):
- First, find the derivative:
\[
y'(t) = -2C_1 e^{-2t} + C_2 e^{-2t} - 2C_2 t e^{-2t}
\]
- Substitute \( t = 0 \) and \( y'(0) = 3 \):
\[
3 = -2C_1 + C_2
\]
- Substitute \( C_1 = 1 \):
\[
3 = -2(1) + C_2 \implies 3 = -2 + C_2 \implies C_2 = 5
\]
4. **Particular Solution**:
- With the determined constants, the particular solution is:
\[
y(t) = e^{-2t} + 5t e](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb26ca370-3b85-410b-82ca-0e03b921dc6b%2Fb557db59-10c9-4cf4-82d6-8282033c2c4d%2Fyr04nxg_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Find a solution to the Initial Value Problem (IVP) for the differential equation:
\( y'' + 4y' + 4y = 0 \),
subject to the initial conditions:
\( y(0) = 1 \) and \( y'(0) = 3 \).
**Explanation:**
To solve this differential equation with the given initial conditions, we follow these steps:
1. **Solve the Characteristic Equation**:
- For the differential equation \( y'' + 4y' + 4y = 0 \), we first find the characteristic equation, which is \( r^2 + 4r + 4 = 0 \).
- Factor the characteristic equation: \( (r + 2)^2 = 0 \).
- This implies \( r = -2 \) is a repeated root.
2. **General Solution**:
- Because there is a repeated root, the general solution takes the form:
\[
y(t) = C_1 e^{-2t} + C_2 t e^{-2t}
\]
3. **Apply Initial Conditions**:
- Use \( y(0) = 1 \):
\[
1 = C_1 e^{0} + C_2 \cdot 0 \cdot e^{0} = C_1
\]
Thus, \( C_1 = 1 \).
- Use \( y'(0) = 3 \):
- First, find the derivative:
\[
y'(t) = -2C_1 e^{-2t} + C_2 e^{-2t} - 2C_2 t e^{-2t}
\]
- Substitute \( t = 0 \) and \( y'(0) = 3 \):
\[
3 = -2C_1 + C_2
\]
- Substitute \( C_1 = 1 \):
\[
3 = -2(1) + C_2 \implies 3 = -2 + C_2 \implies C_2 = 5
\]
4. **Particular Solution**:
- With the determined constants, the particular solution is:
\[
y(t) = e^{-2t} + 5t e
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)