Find a polynomial function with real coefficients that has the given zeros. (There are many correct answers.) 1,9 + V31

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Problem Statement:**

Find a polynomial function with real coefficients that has the given zeros. (There are many correct answers.)

**Given Zeros:**
\[ \frac{3}{8}, -1, 9, \sqrt{3} \]

**Function Representation:**

\[ f(x) = \boxed{} \]

**Explanation for Students:**

To find the polynomial function with the given zeros, you will need to create factors of the form \((x - \text{zero})\) for each zero. For example, if one of the zeros is \( \frac{3}{8} \), the factor would be \((x - \frac{3}{8})\).

- The zeros \( \frac{3}{8}, -1, 9, \text{ and } \sqrt{3} \) lead to the factors:
  - \((x - \frac{3}{8})\)
  - \((x + 1)\)
  - \((x - 9)\)
  - \((x - \sqrt{3})\)

- Notice that since all the zeros given are real, they directly become linear factors of the polynomial.

Multiply these factors to find the polynomial:
\[ f(x) = (x - \frac{3}{8})(x + 1)(x - 9)(x - \sqrt{3}) \]

You can expand this product to find an explicit polynomial expression.
Transcribed Image Text:**Problem Statement:** Find a polynomial function with real coefficients that has the given zeros. (There are many correct answers.) **Given Zeros:** \[ \frac{3}{8}, -1, 9, \sqrt{3} \] **Function Representation:** \[ f(x) = \boxed{} \] **Explanation for Students:** To find the polynomial function with the given zeros, you will need to create factors of the form \((x - \text{zero})\) for each zero. For example, if one of the zeros is \( \frac{3}{8} \), the factor would be \((x - \frac{3}{8})\). - The zeros \( \frac{3}{8}, -1, 9, \text{ and } \sqrt{3} \) lead to the factors: - \((x - \frac{3}{8})\) - \((x + 1)\) - \((x - 9)\) - \((x - \sqrt{3})\) - Notice that since all the zeros given are real, they directly become linear factors of the polynomial. Multiply these factors to find the polynomial: \[ f(x) = (x - \frac{3}{8})(x + 1)(x - 9)(x - \sqrt{3}) \] You can expand this product to find an explicit polynomial expression.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Polynomial
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning